||2^x+x-2|-1| > 2^x-x-1 Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты))) Помним о важном правиле: |x| =x, если x>=0 |x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу: {|2^x+x-2|-1 >2^x-x-1 {|2^x+x-2|-1> -2^x+x+1 Переносим "-1" из левой части в правую: {|2^x+x-2| > 2^x-x {|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу: {2^x+x-2>2^x-x {2x-2>0 {2^x+x-2>x-2^x {2*2^x-2>0 {2^x+x-2>-2^x+x+2 {2*2^x-4>0 {2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1 {2^x>1 {x>0 {2^x>2 {x>1 {x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты)))
Помним о важном правиле:
|x| =x, если x>=0
|x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу:
{|2^x+x-2|-1 >2^x-x-1
{|2^x+x-2|-1> -2^x+x+1
Переносим "-1" из левой части в правую:
{|2^x+x-2| > 2^x-x
{|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу:
{2^x+x-2>2^x-x {2x-2>0
{2^x+x-2>x-2^x {2*2^x-2>0
{2^x+x-2>-2^x+x+2 {2*2^x-4>0
{2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1
{2^x>1 {x>0
{2^x>2 {x>1
{x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
1. ОДЗ: х ∈ R
2. Функция не является четной или нечетной, то есть общего вида.
3. х = 0 ⇒ у = 6
ось 0х не пересекает
4. Асимптот нет
5. Функция убывает на промежутке (-∞; -5/4]
Функция возрастает на промежутке [-5/4; +∞)
6. Функция вогнута.
Объяснение:
Требуется исследовать функцию и построить график.
y = 2x² + 5x + 6
1. ОДЗ: х ∈ R
2. Четность, нечетность.
Если f(-x) = f(x), функция четная.
Если f(-x) = -f(x), функция нечетная.
у(-х) = 2 · (-х)² + 5 · (-х) + 6 = 2х² - 5х + 6
у(-х) ≠ у(х) ≠ -у(х) ⇒ функция не является четной или нечетной, то есть общего вида.
3. Пересечение с осями:
1) х = 0 ⇒ у = 6.
Ось 0у график пересекает в точке (0; 6)
2) у = 0 ⇒ 2х² + 5х + 6 = 0
D = 25 - 4 ·2 · 6 = - 23 <0
⇒ корней нет, ось 0х не пересекает.
4. Асимптоты.
Функция непрерывна, асимптот нет.
5. Возрастание, убывание, экстремумы.
Найдем производную:
y' = 2 · 2x + 5 = 4x + 5
Приравняем к нулю и найдем корни:
4х + 5 = 0
Отметим точку на числовой оси и определим знак производной на промежутках:
⇒ Функция убывает на промежутке (-∞; -5/4]
Функция возрастает на промежутке [-5/4; +∞)
Если производная меняет знак с минуса на плюс, то в данной точке будет минимум.
⇒ координаты точки минимума (-5/4; 2 7/8)
6. Выпуклость, вогнутость, точки перегиба.
Найдем производную второго порядка:
y'' > 0
Если вторая производная больше нуля, то функция вогнута.
Точек перегиба нет.
Строим график.