1. вектор AB + вектор BD= вектор AC + вектор CD2. вектор AB + вектор BC= вектор AD + вектор DCЭто правило треугольника сложения векторов: Видим что конец первого вектора совпадает с началом второго. Значит результатом сложения будет вектор, обозначенный первой буквой первого вектора и второй буквой другого вектора:АВ + ВD = AD, AC + CD = ADВидим, что результаты сложения совпадают, что и требовалось доказать.Аналогично и во втором примере:AB + BC = AC, AD + DC = АС, что и треб. доказать. АВСD - параллелограмм1. CA = СВ + ВА = CD + DA2. DA = DC + CA = DB + BA 1. вектор AB + вектор BC = AC2. вектор MN + вектор NN = MN3. вектор PQ+ вектор QR = PR4.вектор EF + вектор DE = DE + EF = DF выразите вектор BC через векторы AB и AC:BC = AC - AB взята точка D на стороне треугольника ABC. Выразите вектор BD через векторы AB и AD:BD = AD - AB Дан параллелограмм ABCD. Найдите разность:1. вектор AB- вектор AC = CB2. вектор BC - вектор CD = AB+BC = AC
x+y =1
x⁴ +y⁴ =17
Симметричные уравнения
* * * Известно : (x+y)⁴ =x⁴ +4x³y +6x²y² +4xy²+y⁴ * * *
{x+y =1; (x+y)⁴ -4x³y -4xy³ -6x²y² =17.
{x+y =1;(x+y)⁴ -4xy(x²+y²) -6x²y² =17 .
{x+y =1;(x+y)⁴ -4xy ((x+y)² -2xy ) -6(xy)² =17 .
{x + y =1 ; 1 -4xy(1- 2xy) -6(xy)² =17 .
1 -4xy(1- 2xy) -6(xy)² =17 .
1 -4xy+8(xy)² -6(xy)² =17 .
2(xy)² - 4xy -16 =0 .
(xy)² - 2xy -8 =0 .
(xy)₁ = - 2;
(xy)₂ = 4 ;
a) { x+y =1; xy = -2 ⇔t² -t -2 =0 * * * x² -x -2 =0 или y² -y -2 =0 * * *
t₁ = -1 ;t₂ =2.
x₁ = -1 ; y₁ =2 или x₂ =2 ; y₂ = -1 .
(-1; 2) или (2 ;-1)
б) { x+y =1; xy =4=0 ⇔t² -t +4 =0 не имеет решения .
ответ : (-1; 2) , (2 ;-1)