Для того, чтобы найти точки пересечения прямых у = 3 - х и у = 2х, нужно приравнять правые части и решить уравнение относительно переменной х.
Следовательно получим:
3 - х = 2х (перенесем переменную х из левой части в правую, поменяв знак на противоположный);
3 = 2х + х;
3 = х * (2 + 1);
3 = х * 3 (для того, чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель);
х = 3 : 3;
х = 1.
Тогда у = 3 - 1 = 2.
Следовательно точка пересечения прямых у = 3 - х и у = 2х имеет координаты: (1; 2).
ответ: (1; 2).
Объяснение:
Преобразуем неравенство для удобства сравнения. Домножим на 100
480 < 408 < 418 - неверно!
Значит 4,8<4,08<4,18 , то же неверно!
2) 4,18<4,08<4,8 Домножим на 100
418 < 408 < 480 - неверно!
Значит 4,18<4,08<4,8 то же неверно!
3) 4,08<4,18<4,8 Домножим на 100
408 < 418 < 480 - верно!
Значит 4,08<4,18<4,8 то же ВЕРНО!
4) 4,08<4,8<4,18 Домножим на 100
408 < 480 < 418 - неверно!
Значит 4,08<4,8<4,18 то же неверно!
Для того, чтобы найти точки пересечения прямых у = 3 - х и у = 2х, нужно приравнять правые части и решить уравнение относительно переменной х.
Следовательно получим:
3 - х = 2х (перенесем переменную х из левой части в правую, поменяв знак на противоположный);
3 = 2х + х;
3 = х * (2 + 1);
3 = х * 3 (для того, чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель);
х = 3 : 3;
х = 1.
Тогда у = 3 - 1 = 2.
Следовательно точка пересечения прямых у = 3 - х и у = 2х имеет координаты: (1; 2).
ответ: (1; 2).
Объяснение: