--Составить уравнени : по теореме Виета
1) х1 = 2, х2 =-10
x² + px + q = 0
х1+х2=-р -p=2-10=-8 >p=8
х1*х2=q q=-20
x² + 8x -20 = 0
2) х1 = 8, х2 =5
-p=8-5=3 >p=-3
q=40
x² - 3x + 40 = 0
3) х1 = -3, х2 =4
-p=1 >p=-1
q=-12
x² - x - 12 = 0
--Найти сумму и произведение корней.
1) х2-10х+9=0
сумма корней равна коэффициенту p, взятому с обратным знаком, апроизведение корней равно свободному члену q
сумма =10
произведение=9
2) х2-11х+24=0
сумма =11
произведение=24
--Избавиться от избавиться от иррациональности.
1) 2 / (корень из 7 - корень из 2) домножаем на (кор7 +кор2)
2*(кор7 +кор2)/(кор7 +кор2)(кор7-кор2) формула сокращенного умножения, сворачиваем=2*(кор7 +кор2)/(7-2)=
2*(кор7 +кор2)/5=0,4*(кор7 +кор2)
2) 10 / (корень из 3 + корень из 2)=
10*(кор3 -кор2)/(кор3 -кор2)(кор3 +кор2)=10*(кор3 -кор2)/5=
2*(кор3 -кор2)
3) 15 / (корень из 6 - 2)=
15*(кор6 +2)/(кор6 -2)(кор6 +2)=15*(кор6 +2)/(6-4)=15*(кор6 +2)/2=
7,5*(кор6 +2)
х+z/2=1
x-z=3
выражаем х через z,получилось:
3+z+0,5z=1 (1) (1)3+z+0,5z=1
x=3+z 3+1,5z=1
1,5z=-2
z=-2/1,5
z=-1,3
получили систему
x=3-1,3
z=-1,3
ответ:х=1,7 и z=-1,3.
Но лучше спроси у одноклассников.
--Составить уравнени : по теореме Виета
1) х1 = 2, х2 =-10
x² + px + q = 0
х1+х2=-р -p=2-10=-8 >p=8
х1*х2=q q=-20
x² + 8x -20 = 0
2) х1 = 8, х2 =5
-p=8-5=3 >p=-3
q=40
x² - 3x + 40 = 0
3) х1 = -3, х2 =4
-p=1 >p=-1
q=-12
x² - x - 12 = 0
--Найти сумму и произведение корней.
1) х2-10х+9=0
сумма корней равна коэффициенту p, взятому с обратным знаком, апроизведение корней равно свободному члену q
сумма =10
произведение=9
2) х2-11х+24=0
сумма =11
произведение=24
--Избавиться от избавиться от иррациональности.
1) 2 / (корень из 7 - корень из 2) домножаем на (кор7 +кор2)
2*(кор7 +кор2)/(кор7 +кор2)(кор7-кор2) формула сокращенного умножения, сворачиваем=2*(кор7 +кор2)/(7-2)=
2*(кор7 +кор2)/5=0,4*(кор7 +кор2)
2) 10 / (корень из 3 + корень из 2)=
10*(кор3 -кор2)/(кор3 -кор2)(кор3 +кор2)=10*(кор3 -кор2)/5=
2*(кор3 -кор2)
3) 15 / (корень из 6 - 2)=
15*(кор6 +2)/(кор6 -2)(кор6 +2)=15*(кор6 +2)/(6-4)=15*(кор6 +2)/2=
7,5*(кор6 +2)