Объяснение:Количество всевозможных подбрасывания двух игральных костей равно 6*6 = 36 из них благоприятствуют те, у которых на первой игральной кости число очков больше, чем на второй:
1) Если на первой игральной кости выпало 1, то на второй: {2;3;4;5;6} - 5 вариантов
Если выпало 2 очка, то на второй кости: {3;4;5;6} - 4 варианта
Если выпало 3 очка, то на второй кости: {4;5;6} - 3 варианта
Если выпало 4 очка, то на второй кости: {5;6} - 2 варианта
Если выпало 5 очков, то на второй кости: {6} - 1 вариант
Всего вариантов: 5+4+3+2+1=15
P = m/n
где m - число благоприятных исходов; n - число всевозможных исходов
ответ: 5/12
Объяснение:Количество всевозможных подбрасывания двух игральных костей равно 6*6 = 36 из них благоприятствуют те, у которых на первой игральной кости число очков больше, чем на второй:
1) Если на первой игральной кости выпало 1, то на второй: {2;3;4;5;6} - 5 вариантов
Если выпало 2 очка, то на второй кости: {3;4;5;6} - 4 варианта
Если выпало 3 очка, то на второй кости: {4;5;6} - 3 варианта
Если выпало 4 очка, то на второй кости: {5;6} - 2 варианта
Если выпало 5 очков, то на второй кости: {6} - 1 вариант
Всего вариантов: 5+4+3+2+1=15
P = m/n
где m - число благоприятных исходов; n - число всевозможных исходов
m = 15;
n = 36
P = 15/36 = 5/12
ответ:: S6 = 10,2
Объяснение:
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.