A) Решение: y=0; y= (x-2)(x-4)/x+3; (x-2)(x-4)/x+3=0; | x+3 неравно 0, следовательно x неравен -3 (x-2)(x-4)=0; х=2 и x=4 x принадлежит промежутку (2;4). Думаю рисунок сами сможете нарисовать. Там луч надо нарисовать и параболу ветвями вверх. Неравенство строгое, поэтому точки выколотые. б) a) Решение:y=0; y= x^2-8x+16/x^2-3x-10; x^2-3x-10=(x-5)(x+2)(x-2)(x-4)/x+3=0; | (x-5)(x+2) неравно 0, следовательно x неравен 5 и ч неравен -2 x^2-8x+16=0;D=64-64=0 следовательно один знаменатель. x=8/2=4x принадлежит промежутку (4;+∞). Рисунок: луч надо нарисовать. Штриховка в сторону +∞. Неравенство строгое, поэтому точка выколотая.
В точке пересечения значения x и y для обеих прямых будут равны. Отсюда: a) y=2x+3 и y=3x+2: приравниваем их, получаем: 2x+3=3x+2 -x=-1 x=1 y=2*1+3=5 Прямые пересекутся в точке (1;5) б) y=-15x-14 y=-15+8x (или y=-15х+8?) -15x-14=-15+8x или -15x-14=-15x+8 -23x=-1 -14=8 - решений нет, прямые не пересекаются x=1/23 15 y=-15/23-14=-14--- 23 Прямые пересекаются в точке (1/23;-14 15/23)
в) 7x+4=-x+4 8x=0 x=0 y=-0+4=4 Прямые пересекаются в точке (0;4)
г) y=7x+6 y=7x+9 7x+6=7x+9 6≠9 прямые не пересекаются
y=0; y= (x-2)(x-4)/x+3;
(x-2)(x-4)/x+3=0; | x+3 неравно 0, следовательно x неравен -3
(x-2)(x-4)=0;
х=2 и x=4
x принадлежит промежутку (2;4). Думаю рисунок сами сможете нарисовать. Там луч надо нарисовать и параболу ветвями вверх. Неравенство строгое, поэтому точки выколотые.
б) a) Решение:y=0; y= x^2-8x+16/x^2-3x-10; x^2-3x-10=(x-5)(x+2)(x-2)(x-4)/x+3=0; | (x-5)(x+2) неравно 0, следовательно x неравен 5 и ч неравен -2
x^2-8x+16=0;D=64-64=0 следовательно один знаменатель.
x=8/2=4x принадлежит промежутку (4;+∞). Рисунок: луч надо нарисовать. Штриховка в сторону +∞. Неравенство строгое, поэтому точка выколотая.
Отсюда:
a) y=2x+3 и y=3x+2: приравниваем их, получаем:
2x+3=3x+2
-x=-1
x=1
y=2*1+3=5
Прямые пересекутся в точке (1;5)
б) y=-15x-14 y=-15+8x (или y=-15х+8?)
-15x-14=-15+8x или -15x-14=-15x+8
-23x=-1 -14=8 - решений нет, прямые не пересекаются
x=1/23
15
y=-15/23-14=-14---
23
Прямые пересекаются в точке (1/23;-14 15/23)
в) 7x+4=-x+4
8x=0
x=0
y=-0+4=4
Прямые пересекаются в точке (0;4)
г) y=7x+6 y=7x+9
7x+6=7x+9
6≠9
прямые не пересекаются