В решении.
Объяснение:
Разложить квадратный трёхчлен на множители:
1) а² - 12а + 24 = 0
Приравнять к нулю и решить как квадратное уравнение.
D=b²-4ac =144 - 96 = 48 √D=48 = √16*3 = 4√3;
а₁=(-b-√D)/2a
а₁=(12-4√3)/2
а₁=6 - 2√3;
а₂=(-b+√D)/2a
а₂=(12+4√3)/2
а₂=6 + 2√3.
Разложение:
а² - 12а + 24 = (а - (6 - 2√3))(а - (6 + 2√3)) = (а - 6 + 2√3)*(а - 6 - 2√3).
2) -b² + 16b - 15 = 0
-b² + 16b - 15 = 0/-1
b² - 16b + 15 = 0
D=b²-4ac =256 - 60 = 196 √D=14
b₁=(-b-√D)/2a
b₁=(16-14)/2
b₁=2/2
b₁=1;
b₂=(-b+√D)/2a
b₂=(16+14)/2
b₂=30/2
b₂=15.
-b² + 16b - 15 = -(b - 1)(b - 15).
3) -z² - 8z + 9 = 0
-z² - 8z + 9 = 0/-1
z² + 8z - 9 = 0
D=b²-4ac =64 + 36 = 100 √D=10
z₁=(-b-√D)/2a
z₁=(-8-10)/2
z₁= -18/2
z₁= -9;
z₂=(-b+√D)/2a
z₂=(-8+10)/2
z₂=2/2
z₂=1.
-z² - 8z + 9 = -(z + 9)*(z - 1).
сos(4arctgx)=1/2
4arctgx=±arccos(1/2)+2πn, n∈Z;
4arctgx=±π/3+2πn, n∈Z;
arctgx=±π/12+πn/2, n∈Z;
x=tg(±π/12+πn/2), n∈Z;
cos((±π/12+πn/2))≠0
Поскольку арктангенс - это угол из (-π/2;π/2), при n =0 получим два ответа х=tg(±π/12).
tg(π/12)=(tg(π/4-π/6))=(1 -√3/3)/ (1+√3/3)=
(3-√3)/(3+√3) = (3-√3)²/(3²-(√3)² ) =(12-2√3)/(9-3)=2-√3/3
tg(-π/12)=-tg(π/12)=-(2-√3/3)=-2+√3/3
При n=1 х=tg(±π/12+π/2), указанному промежутку удовлетворяет tg(5π/12)=(tg(π/4+π/6))=(1 +√3/3)/ (1-√3/3)=
(3+√3)/(3-√3) = (3+√3)²/(3²-(√3)² ) =(12+2√3)/(9-3)=2+√3/3
При n=-1 х=tg(±π/12-π/2), указанному промежутку удовлетворяет tg(-5π/12)=-tg5π/12=-(2+√3/3 )=-2-√3/3
При n=2 х=tg(±π/12+π); и при n=-2 х=tg(±π/12-π), Корней нет. Остальные можно не проверять, они не войдут в промежуток
(-π/2;π/2).
ответ. х=±(2-√3/3); х=±(2+√3/3 )
В решении.
Объяснение:
Разложить квадратный трёхчлен на множители:
1) а² - 12а + 24 = 0
Приравнять к нулю и решить как квадратное уравнение.
D=b²-4ac =144 - 96 = 48 √D=48 = √16*3 = 4√3;
а₁=(-b-√D)/2a
а₁=(12-4√3)/2
а₁=6 - 2√3;
а₂=(-b+√D)/2a
а₂=(12+4√3)/2
а₂=6 + 2√3.
Разложение:
а² - 12а + 24 = (а - (6 - 2√3))(а - (6 + 2√3)) = (а - 6 + 2√3)*(а - 6 - 2√3).
2) -b² + 16b - 15 = 0
Приравнять к нулю и решить как квадратное уравнение.
-b² + 16b - 15 = 0/-1
b² - 16b + 15 = 0
D=b²-4ac =256 - 60 = 196 √D=14
b₁=(-b-√D)/2a
b₁=(16-14)/2
b₁=2/2
b₁=1;
b₂=(-b+√D)/2a
b₂=(16+14)/2
b₂=30/2
b₂=15.
Разложение:
-b² + 16b - 15 = -(b - 1)(b - 15).
3) -z² - 8z + 9 = 0
Приравнять к нулю и решить как квадратное уравнение.
-z² - 8z + 9 = 0/-1
z² + 8z - 9 = 0
D=b²-4ac =64 + 36 = 100 √D=10
z₁=(-b-√D)/2a
z₁=(-8-10)/2
z₁= -18/2
z₁= -9;
z₂=(-b+√D)/2a
z₂=(-8+10)/2
z₂=2/2
z₂=1.
Разложение:
-z² - 8z + 9 = -(z + 9)*(z - 1).
сos(4arctgx)=1/2
4arctgx=±arccos(1/2)+2πn, n∈Z;
4arctgx=±π/3+2πn, n∈Z;
arctgx=±π/12+πn/2, n∈Z;
x=tg(±π/12+πn/2), n∈Z;
cos((±π/12+πn/2))≠0
Поскольку арктангенс - это угол из (-π/2;π/2), при n =0 получим два ответа х=tg(±π/12).
tg(π/12)=(tg(π/4-π/6))=(1 -√3/3)/ (1+√3/3)=
(3-√3)/(3+√3) = (3-√3)²/(3²-(√3)² ) =(12-2√3)/(9-3)=2-√3/3
tg(-π/12)=-tg(π/12)=-(2-√3/3)=-2+√3/3
При n=1 х=tg(±π/12+π/2), указанному промежутку удовлетворяет tg(5π/12)=(tg(π/4+π/6))=(1 +√3/3)/ (1-√3/3)=
(3+√3)/(3-√3) = (3+√3)²/(3²-(√3)² ) =(12+2√3)/(9-3)=2+√3/3
При n=-1 х=tg(±π/12-π/2), указанному промежутку удовлетворяет tg(-5π/12)=-tg5π/12=-(2+√3/3 )=-2-√3/3
При n=2 х=tg(±π/12+π); и при n=-2 х=tg(±π/12-π), Корней нет. Остальные можно не проверять, они не войдут в промежуток
(-π/2;π/2).
ответ. х=±(2-√3/3); х=±(2+√3/3 )