Наша функция содержит знак модуля. Следовательно, необходимо рассмотреть две ситуации: 1) если х >0. тогда функция примет вид у= -х^2 +3. Графиком является парабола, ветви которой направлены вниз, вершина параболы имеет координаты (0,3), т.е парабола поднята на 3 масштабных единицы вверх. Точки пересечения параболы с осью ОХ имеет координаты (-V3:0) и (+V3;0) Знак V -корень квадратный. 2) Если х<0, функция принимает вид у=x^2 +3. Графиком также является парабола, но ее ветви направлены вверх, вершина параболы имеет координаты (3,0), т.е график подвинулся вверх по оси ОУ. значит точек пересечения параболы с осью ОХ нет.
а) 3,1
б) 4
Объяснение:
а) 6х - 18,6 = 0
Группируем все неизвестные в левой части уравнения, а известные - в правой.
Если неизвестное или известное переносим из одной части уравнения в другую, то меняем знак.
6х оставляем в левой части, а (-18,6) переносим в правую части, при этом меняем знак.
Получаем:
6х = 18,6
Теперь смотри, что не известно.
6х - это 6 умножить на х, где х - неизвестный сомножитель.
Чтобы найти неизвестный сомножитель, надо произведение (18,6) разделить на известных сомножитель:
х = 18,6 : 6
х = 3,1.
Заканчивается решение уравнения ПРОВЕРКОЙ.
Проверка делается так:
1) подставим в первоначальное уравнение вместо х его значение;
2) если уравнение решено правильно, то должно получиться верное равенство, в котором левая часть равна правой части.
Подставляем:
6 · 3,1 - 18,6 = 0
И в исходном уравнении в правой части тоже 0.
Значит, уравнение решено верно.
После этого даём ответ.
ответ: х = 3,1.
б) 3х + 1 = 17 - х
3х + х = 17 - 1
4х = 16
х = 16 : 4
х = 4
ПРОВЕРКА:
левая часть: 3 · 4 + 1 = 13
правая часть: 17 - 4 = 13
левая часть (13) равна правой части (13) - значит, х найден верно.
ответ: х = 4
1) если х >0. тогда функция примет вид у= -х^2 +3. Графиком является парабола, ветви которой направлены вниз,
вершина параболы имеет координаты (0,3), т.е парабола поднята на 3 масштабных единицы вверх.
Точки пересечения параболы с осью ОХ имеет координаты (-V3:0) и (+V3;0) Знак V -корень квадратный.
2) Если х<0, функция принимает вид у=x^2 +3. Графиком также является парабола, но ее ветви направлены вверх,
вершина параболы имеет координаты (3,0), т.е график подвинулся вверх по оси ОУ. значит точек пересечения параболы с осью ОХ нет.