(График немного неправильный. Когда я его рисовал, то у меня зачело в голову, что точка касания это (1;1). Загрузить другой не могу с телефона)
Давайте повернем систему координат на 90° против часовой стрелки.
Тогда график х = у² будет выглядеть так же как и график у = х², но в привычной системе координат.
Так как касательная имеет вид у = -2х - 1, то и у нашей новой касательной коэффициенты k и b будут иметь модули 2 и 1 соответственно.
Ясно, что b = -1, так как прямую надо "спустить" вниз.
А вот теперь загвоздка с k.
По идее надо взять 2, так как наша касательная проходит справа от графика. Но нет. Нужно взять именно 2, так как при повороте системы координат ось Оу направилась влево, значит коэффициент k надо сменить на противоположный. Всё. Получили уравнение х = -2у - 1.
Диагональ параллелепипеда равна 2R,сторона основания (квадрата) равна х,высота параллелепипеда равна h 4R²=2x²+h²⇒h²=4R²-2x²⇒h=√(4R²-2x²) V(x)=x²*√(4R²-2x²) V`(x)=2x*√(4R²-2x²)-2x³/√(4R²-2x²)= =(2x*(4R²-2x²)-2x³)/√(4R²-2x²)=2x(4R²-2x²-x²)/√(4R²-2x²) =2x(4R²-3x²)/√(4R²-2x²)=0 x=0 не удов усл 4R²-3x²=0 3x²=4R² x²=4R²/3 x=-2R/√3 х=2R/√3 _ + _ (-2R/√3)(2R/√3) max
Давайте повернем систему координат на 90° против часовой стрелки.
Тогда график х = у² будет выглядеть так же как и график у = х², но в привычной системе координат.
Так как касательная имеет вид у = -2х - 1, то и у нашей новой касательной коэффициенты k и b будут иметь модули 2 и 1 соответственно.
Ясно, что b = -1, так как прямую надо "спустить" вниз.
А вот теперь загвоздка с k.
По идее надо взять 2, так как наша касательная проходит справа от графика. Но нет. Нужно взять именно 2, так как при повороте системы координат ось Оу направилась влево, значит коэффициент k надо сменить на противоположный.
Всё. Получили уравнение х = -2у - 1.
Выразим у: у = -½х - ½
4R²=2x²+h²⇒h²=4R²-2x²⇒h=√(4R²-2x²)
V(x)=x²*√(4R²-2x²)
V`(x)=2x*√(4R²-2x²)-2x³/√(4R²-2x²)=
=(2x*(4R²-2x²)-2x³)/√(4R²-2x²)=2x(4R²-2x²-x²)/√(4R²-2x²)
=2x(4R²-3x²)/√(4R²-2x²)=0
x=0 не удов усл
4R²-3x²=0
3x²=4R²
x²=4R²/3
x=-2R/√3
х=2R/√3
_ + _
(-2R/√3)(2R/√3)
max
Vmax=4R²/3*√(4R²-8R²/3)=4R²/3*√(4R²/3)=4R²/3*2R/√3=
=8R³/(3√3)=8R³√3/9