Система линейных уравнений, графиком каждого уравнения является прямая. Система не имеет решений, значит графики не пересекаются. Графики не пересекаются, значит прямые параллельны. Надо ответить на вопрос, когда прямые параллельны. Когда их коэффициенты при х и у пропорциональны 2:1=(-1):а а=-0,5
Но параллельные прямые могут совпасть, чтобы этого не случилось, надо чтобы отношение свободных коэффициентов не было пропорционально отношению коээфициентов при х и у. В нашем случае это так 2:1≠5:2 ответ. а=-0,5
Надеюсь, вопрос оканчивается "…на 5 остаток 4" Отталкиваемся от признаков деления на: 2 - последняя цифра делится на 2(0, 2, 4, 6, 8); 4 - число из двух последних цифр делится на 4(00, 04, 08, 12, 16…92, 96); 5 - последняя цифра делится на 5. Прибавляем необходимый остаток от деления к этим "хвостикам" и смотрим, как сочетаются варианты. Получаем, что две последние цифры числа могут быть 19, 39, 59, 79, 99. Надеюсь, установить, какое из этих чисел даёт в остатке 2 при делении на 3, получится самостоятельно.
Система не имеет решений, значит графики не пересекаются.
Графики не пересекаются, значит прямые параллельны.
Надо ответить на вопрос, когда прямые параллельны.
Когда их коэффициенты при х и у пропорциональны
2:1=(-1):а
а=-0,5
Но параллельные прямые могут совпасть, чтобы этого не случилось, надо чтобы отношение свободных коэффициентов не было пропорционально отношению коээфициентов при х и у.
В нашем случае это так
2:1≠5:2
ответ. а=-0,5
Отталкиваемся от признаков деления на:
2 - последняя цифра делится на 2(0, 2, 4, 6, 8);
4 - число из двух последних цифр делится на 4(00, 04, 08, 12, 16…92, 96);
5 - последняя цифра делится на 5.
Прибавляем необходимый остаток от деления к этим "хвостикам" и смотрим, как сочетаются варианты. Получаем, что две последние цифры числа могут быть 19, 39, 59, 79, 99.
Надеюсь, установить, какое из этих чисел даёт в остатке 2 при делении на 3, получится самостоятельно.