РЕШИТЕ ПО ФОРМУЛЕ БАЙЕСА В двух пакетах имеется по 20 конфет одинаковой формы: в первом пакете 5 конфет с начинкой, а во втором – 8. Наугад выбранная конфета оказалась с начинкой. Найти вероятность того, что она была вынута из второго пакета.
Первое неравенство приравняем к нулю и решим квадратное уравнение:
х²-5х+6=0
х₁,₂=(5±√25-24)/2
х₁,₂=(5±√1)/2
х₁,₂=(5±1)/2
х₁=4/2
х₁=2
х₂=6/2
х₂=3
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 2 и х=3. По графику ясно видно, что у>=0 слева и справа от значений х, то есть, решения неравенства находятся в интервале х∈ (-∞, 2]∪[3, +∞).
Неравенство нестрогое, значения х=2 и х=3 входят в число решений неравенства, поэтому скобка квадратная.
Второе неравенство также приравняем к нулю и решим квадратное уравнение:
5x²-3x-2=0
х₁,₂=(3±√9+40)/10
х₁,₂=(3±√49)/10
х₁,₂=(3±7)/10
х₁= -4/10
х₁= -0,4
х₂=10/10
х₂=1
Также начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -0,4 и х=1. Данное уравнение <0, поэтому решения неравенства находится в интервале х∈(-0,4, 1).
Неравенство строгое, скобки круглые.
На числовой оси нужно отметить оба интервала и найти пересечение решений, которое подходит двум неравенствам.
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
x-y=3 3x-y=13
-у=3-х -у=13-3х
у=х-3 у=3х-13
Таблицы:
х -1 0 1 х -1 0 1
у -4 -3 -2 у -16 -13 -10
Согласно графика, координаты точки пересечения прямых (5; 2)
х∈(-0,4, 1).
Это и есть решение системы неравенств.
Объяснение:
Решить систему неравенств:
х²-5х+6>=0
5x²-3x-2<0
Первое неравенство приравняем к нулю и решим квадратное уравнение:
х²-5х+6=0
х₁,₂=(5±√25-24)/2
х₁,₂=(5±√1)/2
х₁,₂=(5±1)/2
х₁=4/2
х₁=2
х₂=6/2
х₂=3
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 2 и х=3. По графику ясно видно, что у>=0 слева и справа от значений х, то есть, решения неравенства находятся в интервале х∈ (-∞, 2]∪[3, +∞).
Неравенство нестрогое, значения х=2 и х=3 входят в число решений неравенства, поэтому скобка квадратная.
Второе неравенство также приравняем к нулю и решим квадратное уравнение:
5x²-3x-2=0
х₁,₂=(3±√9+40)/10
х₁,₂=(3±√49)/10
х₁,₂=(3±7)/10
х₁= -4/10
х₁= -0,4
х₂=10/10
х₂=1
Также начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -0,4 и х=1. Данное уравнение <0, поэтому решения неравенства находится в интервале х∈(-0,4, 1).
Неравенство строгое, скобки круглые.
На числовой оси нужно отметить оба интервала и найти пересечение решений, которое подходит двум неравенствам.
Пересечение решений х∈(-0,4, 1).
Это и есть решение системы неравенств.
Координаты точки пересечения прямых (5; 2)
Решение системы уравнений (5; 2)
Объяснение:
Решить графически систему уравнений:
x-y=3
3x-y=13
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
x-y=3 3x-y=13
-у=3-х -у=13-3х
у=х-3 у=3х-13
Таблицы:
х -1 0 1 х -1 0 1
у -4 -3 -2 у -16 -13 -10
Согласно графика, координаты точки пересечения прямых (5; 2)
Решение системы уравнений (5; 2)