Решите примеры только полностью Арифметическая прогрессия задана формулой an=3n+2 найдите сумму первых а)двадцати членов б) пятнадцати ее членов Только решите правильно через формулы если это нужно
Например, выражение 2x + 4xy2 + x + 2xy2 является многочленом. Проще говоря, многочлен это несколько одночленов, соединенных знаком «плюс».
В некоторых многочленах одночлены могут соединяться знаком «минус». Например, 3x − 5y − 2x. Следует иметь ввиду, что это по-прежнему сумма одночленов. Многочлен 3x − 5y − 2x это сумма одночленов 3x, −5y и − 2x, то есть 3x + (−5y) + (−2x). После раскрытия скобок образуется многочлен 3x − 5y − 2x.
Интегрирование — это одна из двух основных операций в математическом анализе. В отличие от операции дифференцирования, интеграл от элементарной функции может не быть элементарной функцией. Например, из теоремы Лиувилля следует, что интеграл от {\displaystyle e^{x^{2}}}e^{x^2} не является элементарной функцией. Таблицы известных первообразных оказываются часто очень полезны, хотя сейчас и теряют свою актуальность с появлением систем компьютерной алгебры. На этой странице представлен список наиболее часто встречающихся первообразных.
Многочлен — это сумма одночленов.
Например, выражение 2x + 4xy2 + x + 2xy2 является многочленом. Проще говоря, многочлен это несколько одночленов, соединенных знаком «плюс».
В некоторых многочленах одночлены могут соединяться знаком «минус». Например, 3x − 5y − 2x. Следует иметь ввиду, что это по-прежнему сумма одночленов. Многочлен 3x − 5y − 2x это сумма одночленов 3x, −5y и − 2x, то есть 3x + (−5y) + (−2x). После раскрытия скобок образуется многочлен 3x − 5y − 2x.
3x + (−5y) + (−2x) = 3x − 5y − 2x
Интегрирование — это одна из двух основных операций в математическом анализе. В отличие от операции дифференцирования, интеграл от элементарной функции может не быть элементарной функцией. Например, из теоремы Лиувилля следует, что интеграл от {\displaystyle e^{x^{2}}}e^{x^2} не является элементарной функцией. Таблицы известных первообразных оказываются часто очень полезны, хотя сейчас и теряют свою актуальность с появлением систем компьютерной алгебры. На этой странице представлен список наиболее часто встречающихся первообразных.
Объяснение: