Объяснение:
1. На фото 1
а) 1/3 є розв'язком, 7 - не є роза'язком
б) 7 є розв'язком, 1/3 не є розв'язком
2. На фото 2
a) x∈(-2; +∞)
b) x(-∞; 6]
3. а) - 2
б) 9
4.
а) -4x≤ 16
x≥ 16/(-4)
x ≥ -4
x∈[-4; +∞)
б) 7-4x>6x-23
-4x-6x > -23-7
-10x > -30
x < -30/(-10)
x< 3
x∈(-∞; 3)
в) р-ня не має розв'язку, бо на нуль ділити не можна
г) 8x+(x-3)(x+3) ≥ (x+4)²
8x + x² - 9 ≥ x² + 8x +16
x² - x² + 8x - 8x ≥ 16 +9
0 ≥ 25
Р-ня не має коренів
e) домножимо обидві частини р-ня на 20:
5(5x-2) - 4(3-x) > 2(1-x)
25x - 10 -12 + 4x > 2- 2x
29x +2x > 2+12+10
31x > 24
x > 24/31
x ∈( 24/31; +∞)
Объяснение:
1. На фото 1
а) 1/3 є розв'язком, 7 - не є роза'язком
б) 7 є розв'язком, 1/3 не є розв'язком
2. На фото 2
a) x∈(-2; +∞)
b) x(-∞; 6]
3. а) - 2
б) 9
4.
а) -4x≤ 16
x≥ 16/(-4)
x ≥ -4
x∈[-4; +∞)
б) 7-4x>6x-23
-4x-6x > -23-7
-10x > -30
x < -30/(-10)
x< 3
x∈(-∞; 3)
в) р-ня не має розв'язку, бо на нуль ділити не можна
г) 8x+(x-3)(x+3) ≥ (x+4)²
8x + x² - 9 ≥ x² + 8x +16
x² - x² + 8x - 8x ≥ 16 +9
0 ≥ 25
Р-ня не має коренів
e) домножимо обидві частини р-ня на 20:
5(5x-2) - 4(3-x) > 2(1-x)
25x - 10 -12 + 4x > 2- 2x
29x +2x > 2+12+10
31x > 24
x > 24/31
x ∈( 24/31; +∞)
а=1 , b=6 , с=5
D= b²-4ac
D= 36 -4*1*5 =36-20= 16
D>0 два корня уравнения , √D= 4
х₁, х₂ = (-b +- √D) /2a
x₁= (-6-4)/2 =-10/2=-5
x₂= (-6+4)/2 = -2/2=-1
x² -1.8x -3.6 =0
D= (-1.8)² - 4* 1* (-3.6) = 3.24 +14.4 = 17.64
D>0 , √D= 4.2
х₁= (1,8 - 4,2 ) / 2 = 2,4/2=1,2
х₂= (1,8+4,2)/2 = 3
4х²-х-14=0
D= (-1)² -4 *4 *(-14)=1+ 224=225
D>0 , √D= 15
x₁= (1-15)/(2*4)= 14/8= 1.75
x₂= (1+15)/8= 16/8=2
2x²+x-3=0
D= 1 -4*2*(-3) = 1+24=25
D>0 , √D= 5
x₁= (-1-5) /(2*2) = -6/4= -1.5
x₂= (-1+5)/4 =1
2x²-9x=35
2x²-9x-35 =0
D= 81 -4*2*(-35) =81+280=361
D>0 , √D=19
x₁= (9-19)/ (2*2) =-10/4=-2.5
x₂= (9+19)/4 = 28/4=7