А=[2;7]
То есть множество А это множество чисел от 2 (включительно) до 7 (включительно).
В=(2;9)
То есть множество В это множество чисел от 2 (не включительно) до 9 (не включительно)
А∩В то есть пересечение множеств А и В, тоесть необходимо найти все числа, которые одновременно есть как в множестве А, так и в множестве В.
Отметим на кординатной прямой промежутки [2;7] и (2;9).
Пересечение показано на 1 фото.
ответ: (2;7]
A∪B то есть объединение множеств А и В, необходимо найти все числа, которые есть в одном из множеств А или В или есть в обоих.
Объединение показано на 2 фото.
ответ: [2;9)
Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .
А=[2;7]
То есть множество А это множество чисел от 2 (включительно) до 7 (включительно).
В=(2;9)
То есть множество В это множество чисел от 2 (не включительно) до 9 (не включительно)
А∩В то есть пересечение множеств А и В, тоесть необходимо найти все числа, которые одновременно есть как в множестве А, так и в множестве В.
Отметим на кординатной прямой промежутки [2;7] и (2;9).
Пересечение показано на 1 фото.
ответ: (2;7]
A∪B то есть объединение множеств А и В, необходимо найти все числа, которые есть в одном из множеств А или В или есть в обоих.
Отметим на кординатной прямой промежутки [2;7] и (2;9).
Объединение показано на 2 фото.
ответ: [2;9)
Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .