Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
1) Всего шаров 5 + 2 = 7, 5 черных и 2 красных шара. a) Всего выбрать два шара: , всего выбрать два черных шара: . Вероятность:
b) Всего выбрать два красных шара:
c) Вероятность выбрать два разных шара:
2) a) На первой кости нам подойдyт 2, 4, 6, всего же исходов 6: 1, 2, 3, 4, 5, 6. Вероятность выпадения чётного числа очков на кости: . На второй подойдут 3, 4, 5, 6. Вероятность выпадения . Т.к. события независимые, то вероятности перемножаем. . b) Всего у нас 6*6 = 36 исходов выпадения очков на двух костях при том, что мы эти кости различаем. Исходов при котором выпадет хотя бы одна 6 немало, это (на первой кости 6, 1..5) + (1..5, на второй кости 6) + (6, 6): 5 + 5 + 1 = 11. Вероятность равна отношению положительных исходов ко всем исходам:
3) Всего у нас вариантов: ннн, ппп, нпп, ннп, пнп, ппн, пнн, пнп. Устраивают нас варианты: пнн, нпн, ннп. Вероятность у них равная, они несовместны, потому мы будем вероятности складывать.
4) Всего шаров вытащить два шара: вытащить два шара, один из которых окажется белым: . Тогда, вероятность: Вероятность, что среди шаров не будет белого: 1 - 0.2 = 0.8 вытащить чёрный шар вытащить один чёрный и один не чёрный, равна (т.к. не чёрных у нас 6, 5 красных и 1 белый.) Вероятность:
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше
a) Всего выбрать два шара: , всего выбрать два черных шара: . Вероятность:
b) Всего выбрать два красных шара:
c) Вероятность выбрать два разных шара:
2) a) На первой кости нам подойдyт 2, 4, 6, всего же исходов 6: 1, 2, 3, 4, 5, 6. Вероятность выпадения чётного числа очков на кости: . На второй подойдут 3, 4, 5, 6. Вероятность выпадения . Т.к. события независимые, то вероятности перемножаем. .
b) Всего у нас 6*6 = 36 исходов выпадения очков на двух костях при том, что мы эти кости различаем. Исходов при котором выпадет хотя бы одна 6 немало, это (на первой кости 6, 1..5) + (1..5, на второй кости 6) + (6, 6): 5 + 5 + 1 = 11.
Вероятность равна отношению положительных исходов ко всем исходам:
3) Всего у нас вариантов: ннн, ппп, нпп, ннп, пнп, ппн, пнн, пнп.
Устраивают нас варианты: пнн, нпн, ннп.
Вероятность у них равная, они несовместны, потому мы будем вероятности складывать.
4) Всего шаров вытащить два шара:
вытащить два шара, один из которых окажется белым: .
Тогда, вероятность:
Вероятность, что среди шаров не будет белого: 1 - 0.2 = 0.8
вытащить чёрный шар вытащить один чёрный и один не чёрный, равна (т.к. не чёрных у нас 6, 5 красных и 1 белый.)
Вероятность: