Рисуем окружность, отмечаем центр, строим хорду -основа решения задачи. Важное замечание: 1) расстояние от точки до прямой -перпендикуляр. 2) если соединить центр окружности и точки пересечения хорды с окружностью, то мы получим равнобедренный треугольник с бокоой стороной равной радиусу окружности. т.к. этот треугольник -р/б, а расст от центра окр до хорды - перпендикуляр, то он делит хорду пополам. обозначим половину хорды -х теперь у нас есть первый катет-расст от центра ок до хорды=5 второй катет-половина хорды-х и гипотенуза =радиусу окр=13 по теореме пифагора: 13^2=25+x^2 169-25=x^2 144=x^2 x=12 2x=24 ответ: длина хорды равна 24 см
Важное замечание: 1) расстояние от точки до прямой -перпендикуляр.
2) если соединить центр окружности и точки пересечения хорды с окружностью, то мы получим равнобедренный треугольник с бокоой стороной равной радиусу окружности.
т.к. этот треугольник -р/б, а расст от центра окр до хорды - перпендикуляр, то он делит хорду пополам.
обозначим половину хорды -х
теперь у нас есть
первый катет-расст от центра ок до хорды=5
второй катет-половина хорды-х
и гипотенуза =радиусу окр=13
по теореме пифагора:
13^2=25+x^2
169-25=x^2
144=x^2
x=12
2x=24
ответ: длина хорды равна 24 см
1) 12 автомашин.
2) 15 автомашин
3) 5 тонн.
Объяснение:
Пусть х т перевозили на каждой машине фактически, тогда (х+1) т планировали перевозить.
Составляем уравнение и находим х:
60/х - 60/(х+1) = 3
60х + 60 - 60 х = 3х² + 3х
3х² + 3х - 60 = 0
х² + х - 20 = 0
х ₁,₂ = - 1/2 ± √((1/4) + 20) = -1/2 ± 9/2
х = 8/2 = 4 т - фактически перевозили на каждой автомашине;
х+1 = 5 т - планировали перевозить на каждой автомашине.
Теперь отвечаем на все вопросы.
1) Сколько автомашин требовалось сначала?
Сначала требовалось:
60 : 5 = 12 автомашин.
2) Сколько автомашин фактически использовали?
Фактически использовали:
60 : 4 = 15 автомашин
3) Сколько тонн груза планировалось перевозить на каждой машине?
На каждой автомашине планировалось перевозить 5 т груза.