В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Юлия7791
Юлия7791
17.01.2021 23:49 •  Алгебра

Решите студенческий 1.найти интервалы возрастания и убывания функции y=x^3+3x^2+3x 2.исследовать функцию на экстремум y=12x-x^3 3.исследовать на выпуклость и вогнутость кривую y=x^5+5x-6

Показать ответ
Ответ:
popirina2001
popirina2001
07.10.2020 15:20
1)Чтобы найти возрастание и убывание функции нужно найти экстремумы и посмотреть как будет вести себя функция при малейшем отклонении.
y=x^3+3x^2+3x \\ \frac{d}{dx}f(x)=3x^2+6x+3=0 \\ 
x^2+2x+1=0 \\ (x+1)^2=0 \\ x=-1
значит экстремумы в точках -(1;-1)
а это значит что минимумов у функции нет ,так же как и максимумов,но убывает на всей числовой прямой .
2)y=12-x^3 \\ \frac{d}{dx}f(x)=-3x^2+12=0 \\ x=-2 \\ 
x=2
значит экстремумы в точках (-2;16),(2;16)
А тут видно что максимумы функции в точках x=2,а минимумы в точках x=-2
убывает на промежутках [-2;2]
возрастает (-∞;2]∪[2;+∞)
3)сначала найдём производные 
1 производная : 
5x^4+5=0
x∉R
видим что первой производной нет ,ищем вторую
f"(x)=20x^3 \\ 
20x^3=0 \\ x=0

функция выпукла:
(-∞;0)
f"(x)<0
функция вогнута
(0;+∞)
f"(x)>0
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота