Решите уравнение 4sinx +3cosx = 5sin3x , x ∈ [0 ; π/2]
ответ: 0,5arcsin(3/5) , ( π -arcsin(3/5) ) /4 .
Объяснение: 4sinx +3cosx = 5sin3x , x∈ [0 ; π/2]
4sinx +3cosx =5sin3x⇔sinx*4/5+cosx*3/5)=sin3x⇔
sinx*cosφ+cosx*sinφ = sin3x , где cosφ=4/5,sinφ=3/5 ; φ =arcsin(3/5) ⇔
sin(x+φ) =sin3x ⇔sin3x - sin(x+φ)=0 ⇔2sin(x -0,5φ)*cos(2x +0,5φ)=0 ⇔
x-0,5φ= πk ; 2x+0,5φ =π/2+πn k ,n ∈ ℤ
x = 0,5φ+ πk ; x =( -1/4)φ +π/4+(π/2)n k ,n ∈ ℤ
x₁ =0,5arcsin(3/5) и x₂ = π/4 -(1/4)*arcsin3/5 ∈ [0 ; π/2]
* * * sinα=sinβ⇔ sinα-sinβ=0⇔2sin((α-β)/2) *cos((α+β)/2) ⇔
sin((α-β)/2)=0 ; cos((α+β)/2)=0 ⇔ (α-β)/2=πk или ( α+β)/2=π/2 +πn ⇔
α= β+2πk или α = - β + π +2πn ; k , n ∈ ℤ * * *
* * * φ =arccos(4/5) ,φ =arctg(3/4) * * *
Решите уравнение 4sinx +3cosx = 5sin3x , x ∈ [0 ; π/2]
ответ: 0,5arcsin(3/5) , ( π -arcsin(3/5) ) /4 .
Объяснение: 4sinx +3cosx = 5sin3x , x∈ [0 ; π/2]
4sinx +3cosx =5sin3x⇔sinx*4/5+cosx*3/5)=sin3x⇔
sinx*cosφ+cosx*sinφ = sin3x , где cosφ=4/5,sinφ=3/5 ; φ =arcsin(3/5) ⇔
sin(x+φ) =sin3x ⇔sin3x - sin(x+φ)=0 ⇔2sin(x -0,5φ)*cos(2x +0,5φ)=0 ⇔
x-0,5φ= πk ; 2x+0,5φ =π/2+πn k ,n ∈ ℤ
x = 0,5φ+ πk ; x =( -1/4)φ +π/4+(π/2)n k ,n ∈ ℤ
x₁ =0,5arcsin(3/5) и x₂ = π/4 -(1/4)*arcsin3/5 ∈ [0 ; π/2]
* * * sinα=sinβ⇔ sinα-sinβ=0⇔2sin((α-β)/2) *cos((α+β)/2) ⇔
sin((α-β)/2)=0 ; cos((α+β)/2)=0 ⇔ (α-β)/2=πk или ( α+β)/2=π/2 +πn ⇔
α= β+2πk или α = - β + π +2πn ; k , n ∈ ℤ * * *
* * * φ =arccos(4/5) ,φ =arctg(3/4) * * *