Сначала найдем, сколько скотча Игорь потратил на упаковку 390 маленьких коробок:
390 * 50 = 19500 см - именно столько скотча в 3 1/4 рулонах.
Теперь найдем, сколько ему потребуется для упаковки 420 коробок по 70 см каждая.
420 * 70 = 29400 см.
Чтобы узнать, хватит ли ему пяти рулонов, нужно найти, сколько скотча в четырех рулонах. Для этого разделим 19500 на 3 1/4, и найдем, сколько скотча в одном рулоне.
Решение Не выполняя построения, установите взаимное расположение графиков лин.функций: Будем проверять равенство коэффициентов при х и свободные члены y = k₁ + b₁ y = k₂x + b₂ сократим дроби 1) y=12/16x+8/10 = 3/4x + 4/5 y=15/20x+4/5 = 3/4x + 4/5 k₁ = k₂ и b₁ = b₂ Таким образом: y=12/16x+8/10 и y=15/20x+4/5 уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10 k₁ = k₂ = 8/9 значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
Хватит.
Объяснение:
Сначала найдем, сколько скотча Игорь потратил на упаковку 390 маленьких коробок:
390 * 50 = 19500 см - именно столько скотча в 3 1/4 рулонах.
Теперь найдем, сколько ему потребуется для упаковки 420 коробок по 70 см каждая.
420 * 70 = 29400 см.
Чтобы узнать, хватит ли ему пяти рулонов, нужно найти, сколько скотча в четырех рулонах. Для этого разделим 19500 на 3 1/4, и найдем, сколько скотча в одном рулоне.
19500 / 3,25 = 6000 см
Соответственно, в пяти будет 6000 * 5 = 30000 см.
30000 > 29400, значит 5 рулонов ему хватит.
Не выполняя построения, установите взаимное расположение графиков лин.функций:
Будем проверять равенство коэффициентов при х и свободные члены
y = k₁ + b₁ y = k₂x + b₂
сократим дроби
1) y=12/16x+8/10 = 3/4x + 4/5
y=15/20x+4/5 = 3/4x + 4/5
k₁ = k₂ и b₁ = b₂
Таким образом:
y=12/16x+8/10 и y=15/20x+4/5
уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10
k₁ = k₂ = 8/9
значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются