В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С 4 4 4 5 5 5 4 4 5 4 5 5 5 5 4 5 4 4 4 5 4 5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б 3 3 4 4 5 5 3 4 4 3 4 5 5 4 3 5 5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу: - где a-число оценок, b-число учеников.
В итоге и получаем: 1 случай:
2 случай:
3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5). Отсюда:
Второй
Для первого ученика существует 4 варианта: 2,3,4,5 Для второго ученика существует 4 варианта на каждый вариант первого ученика. То есть: - варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика. То есть: - варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
Рассмотрим производную y = x^3 - 3x y' = 3x^2 - 3 Соответственно, y' = 0 при x^2 = +- 1 y' < 0 при -1 < x < 1 - на этом интервале функция y убывает y' > 0 при |x| > 1 - возрастает
То есть, функция y = x^3 - 3x сначала возрастает до x = -1 {y(-1) = -1 + 3 = 2} в точке (-1, 2) имеет локальный максимум далее убывает до x = 1 {y(1) = 1 - 3 = -2} локальный минимум в точке (1, -2) далее возрастает
получается, что прямая y = a будет иметь с данной функцией 3 пересечения при -2 < a < 2 (пересекает все три участка возрастания/убывания) 2 пересечения при a = +-2 (пересекает один из участков и проходит через одну точку локального максимума/минимума) 1 пересечение при |a| > 2
1 ученик - А
2 ученик - Б
Получаем:
А Б
4 5
5 4
5 5
4 4
В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С
4 4 4
5 5 5
4 4 5
4 5 5
5 5 4
5 4 4
4 5 4
5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б
3 3
4 4
5 5
3 4
4 3
4 5
5 4
3 5
5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу:
- где a-число оценок, b-число учеников.
В итоге и получаем:
1 случай:
2 случай:
3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
Второй
Для первого ученика существует 4 варианта:
2,3,4,5
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
- варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
- варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
- вариантов событий.
y' = 3x^2 - 3
Соответственно,
y' = 0 при x^2 = +- 1
y' < 0 при -1 < x < 1 - на этом интервале функция y убывает
y' > 0 при |x| > 1 - возрастает
То есть, функция y = x^3 - 3x
сначала возрастает до x = -1 {y(-1) = -1 + 3 = 2}
в точке (-1, 2) имеет локальный максимум
далее убывает до x = 1 {y(1) = 1 - 3 = -2}
локальный минимум в точке (1, -2)
далее возрастает
получается, что прямая y = a будет иметь с данной функцией
3 пересечения при -2 < a < 2 (пересекает все три участка возрастания/убывания)
2 пересечения при a = +-2 (пересекает один из участков и проходит через одну точку локального максимума/минимума)
1 пересечение при |a| > 2
Т.е. искомые значения параметра: |a| > 2