1. Площадь прямоугольника - 250 см² Одна сторона - 2,5а см² Вторая сторона - а см² 2,5а*а=250 (a>0) 2,5а²=250 a²=100 a=√100 a=10 (см) - вторая сторона прямоугольника 2,5а=2,5*10=25 (см) - первая сторона прямоугольника 25>10 ответ: Большая сторона прямоугольника равна 25 см
2. x²+15x+q=0 x₁-x₂=3 q=? Для решения задачи применяем теорему Виета. Составим систему(решаем методом сложения): {x₁+x₂=-15 {x₁-x₂=3 => 2x₁=-12 x₁=-6 -6+x₂=-15 x₂=-9 q=x₁*x₂=-6*(-9)=54 ответ: 54
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
Площадь прямоугольника - 250 см²
Одна сторона - 2,5а см²
Вторая сторона - а см²
2,5а*а=250 (a>0)
2,5а²=250
a²=100
a=√100
a=10 (см) - вторая сторона прямоугольника
2,5а=2,5*10=25 (см) - первая сторона прямоугольника
25>10
ответ: Большая сторона прямоугольника равна 25 см
2.
x²+15x+q=0
x₁-x₂=3 q=?
Для решения задачи применяем теорему Виета.
Составим систему(решаем методом сложения):
{x₁+x₂=-15
{x₁-x₂=3 => 2x₁=-12
x₁=-6
-6+x₂=-15
x₂=-9
q=x₁*x₂=-6*(-9)=54
ответ: 54
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.