В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Ru5829
Ru5829
17.04.2022 16:04 •  Алгебра

Решите уравнения с нахождения дискриминанта 11) х2-10х-11=0 12) 2х2-28х-30=0 13) 0,5х2-7х-16=0 14) х2-17х-38=0 15) х2-17х-18=0

Показать ответ
Ответ:
mahomaev
mahomaev
13.10.2021 20:28

ответ: a ∈ (-1/40; 0)∪(0; +∞)∪{-2}.

Пошаговое объяснение: Рассмотрим отдельно случай, когда а = 0. Имеем следующее уравнение: -2x = 10, имеющее единственный корень. Данное значение а нам не подходит.

Пусть а = -2. Имеем следующее уравнение:

0x² - (0+2)x +10 - 10 = 0; 10 = 10 ⇒ x - любое число. Корней бесконечно много, поэтому это значение параметра нам подходит.

Если а ≠ 0, то уравнение - квадратное и имеет больше одного корня, если его дискриминант D > 0.

Найдем дискриминант:

D = (-(a+2))² - 4a(2a + 4)(-5a - 10) = a² + 4a + 4 + 4a(2a + 4)(5a

+ 10) = a²+ 4a + 4 + 4a(10a² + 20a + 20a + 40) = a² + 4a + 4 + 40a³ + 160a² + 160a = 40a³ + 161a² + 164a + 4 > 0.

40a³ + 161a² + 164a + 4 > 0

40a³ + a² + 160a² + 4a + 160a + 4 > 0

a²(40a + 1 ) + 4a(40a + 1) + 4(40a + 1) > 0

(40a + 1)(a² + 4a + 4)>0

(40a + 1)(a + 2)²> 0

40a+ 1 > 0 ⇒ a > -1/40.

Не забываем про a = -2 и а = 0, записываем ответ: a ∈ (-1/40; 0)∪(0; +∞)∪{-2}.

0,0(0 оценок)
Ответ:
lerahmru
lerahmru
06.01.2021 09:20

сумма n последовательных нечетных натуральных чисел при n>1

1+3+5+7+...+(2n-1)=n^2

Доказательство методом математической индукции

База индукции

n=2. 1+3=2^2

Гипотеза индукции

Пусть для n=k утверждение выполняется, т.е. выполняется

1+3+5+7+...+(2k-1)=k^2

Индукционный переход. Докажем, что тогда выполняется утверждение и для n=k+1, т.е, что выполняется

1+3+5+7+...+(2k-1)+(2K+1)=(k+1)^2

1+3+5+7+...+(2k-1)+(2K+1)=используем гипотезу МИ=k^2+(2k+1)=k^2+2k+1=используем формлу квадрату двучлена=(k+1)^2, что и требовалось доказать.

По методому математической индукции формула справедлива.

Число n^2 при n>1 zвляется составным, оно делится на 1,n,n^2.

А значит сумма n последовательных нечетных натуральных чисел при n>1 является составным числом. Доказано

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота