1)
1) Умножим обе части. = 3(х-1)-2(х+1)=6
2) Раскроем скобки. = 3х-3-2(х+1)=6 -> 3х-3-2х-2=6
3) Вычислим. = х-3-2=6 -> х-5=6
4) Переносим (-5) вправо. = х=6+5
5) Вычисляем и получаем: х = 11
ответ: х=11
2)
1) Раскроем скобки. = 2-х-2х+х(2)=(х+3)*(х-4) -> 2-х-2х+х(2)=х(2)-4х+3х-12
2) Уберём равные числа. = 2-х-2х=-4х+3х-12
3) Вычислим. = 2-3х=-4х+3х-12 -> 2-3х=-х-12
4) Переносим лишние числа (х) и (2) влево. = -3х+х=-12-2
5) Вычисляем. = -2х=-12-2 -> -2х=-14
6) Разделяем и получаем: х=7
ответ: х = 7
Разбор (2) после х, (2) означает степень.
1)
1) Умножим обе части. = 3(х-1)-2(х+1)=6
2) Раскроем скобки. = 3х-3-2(х+1)=6 -> 3х-3-2х-2=6
3) Вычислим. = х-3-2=6 -> х-5=6
4) Переносим (-5) вправо. = х=6+5
5) Вычисляем и получаем: х = 11
ответ: х=11
2)
1) Раскроем скобки. = 2-х-2х+х(2)=(х+3)*(х-4) -> 2-х-2х+х(2)=х(2)-4х+3х-12
2) Уберём равные числа. = 2-х-2х=-4х+3х-12
3) Вычислим. = 2-3х=-4х+3х-12 -> 2-3х=-х-12
4) Переносим лишние числа (х) и (2) влево. = -3х+х=-12-2
5) Вычисляем. = -2х=-12-2 -> -2х=-14
6) Разделяем и получаем: х=7
ответ: х = 7
Разбор (2) после х, (2) означает степень.
x1=πn,n∈z
3π<πn<4π
3<n<4
нет решения
6cos²x-11cosx+4=0
cosx=a
6a²-11a+4=0
D=121-96=25
a1=(11-5)/12=1/2⇒cosx=1/2⇒x=11π/6+2πk,k∈z
3π<11π/6+2πk<4π
18<11+12k<24
7<12k<13
7/12<k<13/12
k=1⇒x=11π/6+2π=23π/6
a2=(11+5)/12=4/3⇒cosx=4/3>1 нетрешения
2)2сos²x+10sin2xcos2x+4sin²x+4cos²x=0/cos²x
4tg²x+10tgx+6=0
tgx=a
2a²+5a+3=0
D=25-24=1
a1=(-5-1)/4=-1,5⇒tgx=-1,5⇒x=-arctg1,5+πn
x=2π-arctg1,5
a2=(-5+1)/4=-1⇒tgx=-1⇒x=-π/4+πk,k∈z
x=3π/4
3)3cos²x+5sinxcosx+2cos²x=0
5cosx*(cosx+sinx)=0
cosx=0⇒x=π/2+πn,n∈z
x=5π/2
cosx+sinx=0/cosx
tgx+1=0
tgx=-1⇒x=-π/4+πm,m∈z
x=7π/4