Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
1) Так как в прямоугольнике все углы прямые, то биссектриса делит угол 90° на 2 угла, по 45° каждый, и следовательно, меньшая сторона и отрезок длиной 5 см на большей стороне образуют равнобедренный прямоугольный треугольник, в котором катеты равны по 5 см.
2) Следовательно, меньшая сторона прямоугольника равна 5 см, а большая сторона равна 10 см.
3) Периметр прямоугольника:
Р = 2·(а+b) = 2 ·(10+5) = 2·15 = 30 cм.
4) Площадь прямоугольника:
S = а ·b = 10 · 5 = 50 см².
ответ: 50 см².
Задание № 2.
1) Из вершин верхнего основания опускаем 2 перпендикуляра на нижнее основание. Так как трапеция равнобедренная, то перпендикуляры разобьют нижнее основание на 3 отрезка: средний будет равен верхнему основанию (12 см) а два других, равных между собой, - это катеты прямоугольных треугольников, в которых гипотенуза - это боковая сторона трапеции (13 см), а другой кате - высота (12 см).
По теореме Пифагора находим катет, который лежит в основании:
b = √(c²-a²) = √(13²-12²) = √(169-144) = √25 = 5 см.
2) Находим длину нижнего основания:
5+12+5 = 22 см.
3) Площадь трапеции равна произведению полусуммы её оснований на высоту:
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
См. Объяснение
Объяснение:
Первая карточка
Задание № 1.
1) Так как в прямоугольнике все углы прямые, то биссектриса делит угол 90° на 2 угла, по 45° каждый, и следовательно, меньшая сторона и отрезок длиной 5 см на большей стороне образуют равнобедренный прямоугольный треугольник, в котором катеты равны по 5 см.
2) Следовательно, меньшая сторона прямоугольника равна 5 см, а большая сторона равна 10 см.
3) Периметр прямоугольника:
Р = 2·(а+b) = 2 ·(10+5) = 2·15 = 30 cм.
4) Площадь прямоугольника:
S = а ·b = 10 · 5 = 50 см².
ответ: 50 см².
Задание № 2.
1) Из вершин верхнего основания опускаем 2 перпендикуляра на нижнее основание. Так как трапеция равнобедренная, то перпендикуляры разобьют нижнее основание на 3 отрезка: средний будет равен верхнему основанию (12 см) а два других, равных между собой, - это катеты прямоугольных треугольников, в которых гипотенуза - это боковая сторона трапеции (13 см), а другой кате - высота (12 см).
По теореме Пифагора находим катет, который лежит в основании:
b = √(c²-a²) = √(13²-12²) = √(169-144) = √25 = 5 см.
2) Находим длину нижнего основания:
5+12+5 = 22 см.
3) Площадь трапеции равна произведению полусуммы её оснований на высоту:
S = ((12 + 22) : 2) · 12 = (34:2)·12 = 17 · 12 = 204 см²
ответ: 204 см²
Вторая карточка
№ 2.
Длина большей диагонали ромба = 6.
Длина меньшей диагонали = 2.
Площадь ромба равна половине произведения его диагоналей:
S = (d₁·d₂) : 2 = (6· 2) : 2 = 12 : 2 = 6.
ответ: 6 ед. измерения; 6 ед. изм.²
№ 1.
1) Площадь всей комнаты:
6 · 7 = 42 м².
2) Площадь половины комнаты:
42 : 2 = 21 м².
3) Площадь одной дощечки, в метрах квадратных:
0,1 · 0,25 = 0,025 м²
4) Количество необходимых дощечек:
21 : 0,025 = 840 штук.
ответ: 840 шт.
№ 2.
Сумма углом параллелограмма, прилежащих к одной его стороне, равна 180°.
Пусть х - один угол, тогда 3х - другой.
х + 3х = 180
4х = 180
х = 45°
3х = 45 · 3 = 135°.
ответ: 135°.
№ 3.
Пусть х - одна сторона, тогда 2х - другая сторона.
Составляем уравнение периметра:
х + х + 2х + 2х = 42
6 х = 42
х = 42 : 6 = 7 см
2х = 7 · 2 = 14 см
ответ: 14 см