Докажем методом от противного. Пусть такое возможно. рассмотрим 3 случая 1. из квадрата четного вычитаем квадрат нечетного (или наоборот): из четного вычитаем нечетное, а получаем четное, такое невозможно. 2. из четного четное. квадрат четного кратен 4. два числа кратных 4 в сумме и разности дают число кратное 4, а по условию наше число, четное, но не кратно 4 - не уд 3. из нечетного нечетное (2k+1)^2-(2a+1)^2= 4n+2 4k^2 +4k+1-4a^2-4a-1= 4n+2 4(k^2+k-a^2-a)=4n+2 левая часть кратна четырем, а правая нет, значит это невозможно.
sqrt(7)-sqrt(5) ??? sqrt(13)-sqrt(11)
умножим обе части на (sqrt(7)+sqrt(5))(sqrt(13)+sqrt(11)) > 0 и обнаружим разность квадратов
(7-5)(sqrt(13)+sqrt(11) ??? (13-11)(sqrt(7)+sqrt(5))
2(sqrt(13)+sqrt(11) ??? 2(sqrt(7)+sqrt(5))
очевидно, что sqrt(13)>sqrt(7) и sqrt(11)>sqrt(5)
значит левая часть больше правой
б)
(sqrt(2) - 2) x > sqrt(2) + 2
умножим обе части на (sqrt(2) + 2) >0
(sqrt(2) + 2)((sqrt(2) - 2)) x > (sqrt(2) + 2)^2
(2-4)x > 2+4sqrt(2)+4
x<-3-2sqrt(2)
правая часть ~ -5.8
наибольшее целое x = -6
1. из квадрата четного вычитаем квадрат нечетного (или наоборот): из четного вычитаем нечетное, а получаем четное, такое невозможно.
2. из четного четное. квадрат четного кратен 4. два числа кратных 4 в сумме и разности дают число кратное 4, а по условию наше число, четное, но не кратно 4 - не уд
3. из нечетного нечетное (2k+1)^2-(2a+1)^2= 4n+2
4k^2 +4k+1-4a^2-4a-1= 4n+2
4(k^2+k-a^2-a)=4n+2
левая часть кратна четырем, а правая нет, значит это невозможно.