Нужно применить метод замены равносильным неравенством (равносильным по знаку). Сначала нужно преобразовать. logx^2_(x^2-2x+1)≤logx^2_x^2; Дальше такая замена logc_a≤logc_b;⇔ (c-1)*(a-b)≤0. используя эту теорему, можно записать: (x^2-1)*(x^2-2x+1-x^2)≤0; (x+1)(x-1)(-2x+1)≤0; умножим на минус 1, поменяем знак и получим (x+1)(x-1)(2x-1)≥0. Метод интервалов даст решение: x∈[-1;1/2]∨[1; + бесконечность). Теперь надо обязательно найти ОДЗ и пересечь с ним решение: ОДЗ: x^2>0; ⇒x≠0; x^2≠1; ⇒x≠ + - 1; (x-1)^2>0; ⇒x≠1. То есть по Одз исключаются точки -1, 0 и 1. ТОгда решением неравенства будет множество х, ∈ (-1;0) U (0;1/2] U (1;+бесконечность). А ответ не сходится потому, что это ответ для системы неравенств, если это С3
Пусть первому мастеру нужно было Х дней, чтобы выполнить работу в одиночестве. Тогда второму на одиночную работу потребовалось бы Х+7 дней. Первый мастер каждый день выполнял 1/Х долю работы, второй 1/(Х+7). Первый мастер работал 15 дней и выполнил 15/Х долей работы; остаток работы выполнил второй мастер, который работал (15-7)/(Х+7). Полная работа, как легко можно понять, состоит из целой единицы - так, например, первый мастер работал бы Х дней и выполнял бы 1/Х долю работы за каждый, Х*(1/Х)=1. Отсюда уравнение:
Корни найдены по теореме Виета, и очевидно, что отрицательный противоречит смыслу задачи. Следовательно, Х=21, а Х+7=28. ответ. Первый мастер выполнил бы работу за 21 день, второй - за 28.
logx^2_(x^2-2x+1)≤logx^2_x^2;
Дальше такая замена logc_a≤logc_b;⇔ (c-1)*(a-b)≤0.
используя эту теорему, можно записать:
(x^2-1)*(x^2-2x+1-x^2)≤0;
(x+1)(x-1)(-2x+1)≤0; умножим на минус 1, поменяем знак и получим
(x+1)(x-1)(2x-1)≥0.
Метод интервалов даст решение: x∈[-1;1/2]∨[1; + бесконечность).
Теперь надо обязательно найти ОДЗ и пересечь с ним решение:
ОДЗ: x^2>0; ⇒x≠0;
x^2≠1; ⇒x≠ + - 1;
(x-1)^2>0; ⇒x≠1.
То есть по Одз исключаются точки -1, 0 и 1. ТОгда решением неравенства будет множество х, ∈ (-1;0) U (0;1/2] U (1;+бесконечность).
А ответ не сходится потому, что это ответ для системы неравенств, если это С3
Корни найдены по теореме Виета, и очевидно, что отрицательный противоречит смыслу задачи. Следовательно, Х=21, а Х+7=28.
ответ. Первый мастер выполнил бы работу за 21 день, второй - за 28.