С графика функции y=tgx выяснить, при каких значениях x из промежутка[-pi;2pi] данная функция: 1) возрастает, убывает 2) принимает значения, равные нулю 3) принимает положительные, отрицательные значения
1) y'=45-6*x-3*x². Решая уравнение -3*x²-6*x+45, или равносильное ему x²+2*x-15=0, находим x1=-5 и x2=3. В этих точках производная обращается в 0 и функция может иметь экстремумы. При x<-5 y'>0, при -5<x<3 y'<0, при x>3 y'>0. Функция определена и непрерывна на всей числовой оси. На интервалах (-∞;-5) и (3;+∞) функция монотонно возрастает, на интервале (-5;3) функция монотонно убывает. 2) Так как при переходе через точки x=-5 и x=3 производная меняет знак, то эти точки являются точками экстремума, причём x=-5 - точкой максимума, а x=3 - точкой минимума.
Пусть сумма, взятая в кредит, = 14 частям. ТОгда каждый месяц возвращаем 1 часть в виде основного долга + проценты, набежавшие за месяц. Сумма, на которую накручиваются %, кадый месяц уменьшается на 1 часть. То есть после 1 месяца возвращаем проценты с 14-ти частей, после 2-го месяца возвращаем % с 13 частей и т.д. После 14-го месяца возвращаем проценты только с 1 части Проценты за 1-й месяц а1 = 14 * r/100; Проценты за 2-й месяц а2= 13* r/100;
Проценты за 14- месяц а14 = 1 * r/100. Всего сумма уплаченных процентов - это арифм. прогрессия, S14=(a1+a14)/2 * 14= (0,14 r + 0,01 r)/2 * 14 = 0,15r * 7 = 1,05 r. По условию эта сумма равна 15% от суммы долга, то есть 14 * 15/100 = 2,1 Уравнение 1,05 r = 2,1; r = 2.1 : 1,05 ; r = 2%
x²+2*x-15=0, находим x1=-5 и x2=3. В этих точках производная обращается в 0 и функция может иметь экстремумы. При x<-5 y'>0, при -5<x<3 y'<0, при x>3 y'>0. Функция определена и непрерывна на всей числовой оси. На интервалах (-∞;-5) и (3;+∞) функция монотонно возрастает, на интервале (-5;3) функция монотонно убывает.
2) Так как при переходе через точки x=-5 и x=3 производная меняет знак, то эти точки являются точками экстремума, причём x=-5 - точкой максимума, а x=3 - точкой минимума.
ТОгда каждый месяц возвращаем 1 часть в виде основного долга + проценты, набежавшие за месяц.
Сумма, на которую накручиваются %, кадый месяц уменьшается на 1 часть.
То есть после 1 месяца возвращаем проценты с 14-ти частей, после 2-го месяца возвращаем % с 13 частей и т.д. После 14-го месяца возвращаем проценты только с 1 части
Проценты за 1-й месяц а1 = 14 * r/100;
Проценты за 2-й месяц а2= 13* r/100;
Проценты за 14- месяц а14 = 1 * r/100.
Всего сумма уплаченных процентов - это арифм. прогрессия,
S14=(a1+a14)/2 * 14= (0,14 r + 0,01 r)/2 * 14 = 0,15r * 7 = 1,05 r.
По условию эта сумма равна 15% от суммы долга, то есть 14 * 15/100 = 2,1
Уравнение 1,05 r = 2,1;
r = 2.1 : 1,05 ;
r = 2%