(с пояснениями) На рисунке представлены графики прямых пропорциональностей. Пользуясь графиком, определите коэффициенты пропорциональности и запишите формулы. Укажите, при каких значениях х у2 — y1 = 3 (см. рис. 106), где y1 и y2 ординаты точек графиков I и II соответственно.
Вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом[1].
Вектор с началом в точке {\displaystyle A}A и концом в точке {\displaystyle B}B принято обозначать как {\displaystyle {\overrightarrow {AB}}}\overrightarrow {AB}. Векторы также могут обозначаться малыми латинскими буквами со стрелкой (иногда — чёрточкой) над ними, например {\displaystyle {\vec {a}}}{\vec {a}}. Другой рас записи: написание символа вектора прямым жирным шрифтом: {\displaystyle \mathbf {a} }{\mathbf {a}}.
а) Сумма равна 1, это одна возможная комбинация: {0} {1}, поэтому:
б) Сумма равная 2, это ({0};{2}), можно было бы составить другой комбинацией, но у нас нет двух карточек с единицами, поэтому вероятность так же равна:
в) Сумма равна 3, это ({0};{3}) или ({1};{2}) Вероятность равна: г) Сумма равна 6, это ({0};{6}) ({1};{5}) ({2};{4}) Вероятность равна: д) Сумма равна 9, это: ({0};{9}) ({1};{8}) ({2};{7}) ({3};{6}) ({4};{5}) Вероятность равна: Таким образом, можно заметить, что вероятность зависит только от кол-ва составлений данного числа другими числами с карточек.
Вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом[1].
Вектор с началом в точке {\displaystyle A}A и концом в точке {\displaystyle B}B принято обозначать как {\displaystyle {\overrightarrow {AB}}}\overrightarrow {AB}. Векторы также могут обозначаться малыми латинскими буквами со стрелкой (иногда — чёрточкой) над ними, например {\displaystyle {\vec {a}}}{\vec {a}}. Другой рас записи: написание символа вектора прямым жирным шрифтом: {\displaystyle \mathbf {a} }{\mathbf {a}}.
а) Сумма равна 1, это одна возможная комбинация: {0} {1}, поэтому:
б) Сумма равная 2, это ({0};{2}), можно было бы составить другой комбинацией, но у нас нет двух карточек с единицами, поэтому вероятность так же равна:
в) Сумма равна 3, это ({0};{3}) или ({1};{2})
Вероятность равна:
г) Сумма равна 6, это ({0};{6}) ({1};{5}) ({2};{4})
Вероятность равна:
д) Сумма равна 9, это: ({0};{9}) ({1};{8}) ({2};{7}) ({3};{6}) ({4};{5})
Вероятность равна:
Таким образом, можно заметить, что вероятность зависит только от кол-ва составлений данного числа другими числами с карточек.