"периметр прямоугольника равен 22 см. Если одну из его сторон уменьшить на 1 см, а вторую увеличить на 2 см, то достанем прямоугольник, площадь которого на 8 см2 больше чем площадь начального прямоугольника. Найдите стороны исходного прямоугольника"
***
Р =2(a+b), где а и b - размеры первоначального прямоугольника.
(а-1) см, (b+2) - размеры нового прямоугольника.
S1=ab см² - площадь первоначального прямоугольника;
a) Рассмотри график функции y=x^2+3x+3 Найдем точки пересечения с осью Ох, решив уравнение x^2+3x+3=0 D = 9 - 4*3= - 3 Т.к. D = -3 < 0 , Следовательно, график y=x^2+3x+3 не пересекает ось Ох Т.к. коэффициент при x^2 = 1>0 , то ветви графика (ветви параболы) направлены вверх, следовательно график полностью распологается выше оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена x^2+3x+3-положительно
б) Рассуждения аналогичны предыдущему примеру Вычислим дискриминант для уравнения 4x-4x^2-2=0 D = 16 - 4*4*2 = -16 Следовательно, график y=4x-4x^2-2 не пересекает ось Ох Т.к. коэффициент при x^2 = -4<0 , то ветви графика (ветви параболы) направлены вниз, следовательно график полностью распологается ниже оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена 4x-4x^2-2-отрицательно
ответ: а=7 см, b= 4 см.
Объяснение:
"периметр прямоугольника равен 22 см. Если одну из его сторон уменьшить на 1 см, а вторую увеличить на 2 см, то достанем прямоугольник, площадь которого на 8 см2 больше чем площадь начального прямоугольника. Найдите стороны исходного прямоугольника"
***
Р =2(a+b), где а и b - размеры первоначального прямоугольника.
(а-1) см, (b+2) - размеры нового прямоугольника.
S1=ab см² - площадь первоначального прямоугольника;
S2=(a-1)(b+2) - площадь нового прямоугольника.
S2-S1=8 см².
(a-1)(b+2) - ab=8;
2(a+b)=22;
Это система уравнений. Решаем её:
ab+2a-b-2-ab=8;
2a-b=10;
a+b=11;
a=11-b;
2(11-b)-b=10;
22-2b-b=10;
-3b=-12;
b=4 см;
a=11-b=11-4=7 см.
Проверим:
периметр Р=2(4+7)=2*11=22 см. Всё верно!
Найдем точки пересечения с осью Ох, решив уравнение x^2+3x+3=0
D = 9 - 4*3= - 3
Т.к. D = -3 < 0 ,
Следовательно, график y=x^2+3x+3 не пересекает ось Ох
Т.к. коэффициент при x^2 = 1>0 , то ветви графика (ветви параболы) направлены вверх, следовательно график полностью распологается выше оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена x^2+3x+3-положительно
б) Рассуждения аналогичны предыдущему примеру
Вычислим дискриминант для уравнения 4x-4x^2-2=0
D = 16 - 4*4*2 = -16
Следовательно, график y=4x-4x^2-2 не пересекает ось Ох
Т.к. коэффициент при x^2 = -4<0 , то ветви графика (ветви параболы) направлены вниз, следовательно график полностью распологается ниже оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена 4x-4x^2-2-отрицательно