В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
zlooo2
zlooo2
14.08.2022 16:44 •  Алгебра

с упрощением (желательно с объяснением)​


с упрощением (желательно с объяснением)​

Показать ответ
Ответ:
Лера565009
Лера565009
22.04.2022 23:45
(5y - 2)(y + 3) = (3y + 2)(2y + 1)
5y^2 + 13y - 6 = 6y^2 + 7y + 2
5y^2 - 6y^2 + 13y - 7y - 6 - 2 = 0
- y^2 + 6y - 8 = 0
y^2 - 6y + 8 = 0
D = b^2 - 4ac= 36 - 32 = 4 = 2^2
y1 = ( 6 + 2)/ 2 = 4
y2 = ( 6 - 2) / 2 = 2
Проверяем подходят ли оба корня:
y =4                                                      y = 2
(20 - 2)/(8 +1 )=( 12 + 2)/ 7                (10 - 2)/(4 + 1) = (6 + 2)/5
18/9 = 14/7                                            8/ 5 = 8/5 - верно.
2 = 2 - верно.
Находим среднее арифметическое корней:
(4 + 2) / 2 = 3
0,0(0 оценок)
Ответ:
romancsosnin
romancsosnin
14.04.2020 12:55
Интегралы очень простые, тут и решать нечего. Я понимаю, если были бы сложные, там с заменой или с решением по частям. Но тут решать то:
Разность интеграла есть разность интегралов.
То есть каждую часть ты берешь и интегрируешь, далее подставляешь границы. 
Ну я в общем все реши, держи:

__________________________________________
\int\limits^2_1 {( 3x^{2}-4x- \frac{2}{ x^{2} }) } \, dx = \int\limits^2_1 {3 x^{2} } \, dx - \int\limits^2_1 {4x} \, dx - \int\limits^2_1 { \frac{2}{ x^{2} } } \, dx = 
 x^{3} - 2 x^{2} + \frac{2}{x}

Там понятно, что у каждого границы от 1 до 2, поэтому я не писал.
Далее находим их значения:
(8-1)-(8-2)+(1-2)=0

________________________________________
\int\limits^4_1 {(4 \sqrt{x} -3 x^{2} )} \, dx = \int\limits^4_1 {4 \sqrt{x} } \, dx - \int\limits^4_1 {3 x^{2} } \, dx = 4 \int\limits^4_1 { \sqrt{x} } \, dx - 3 \int\limits^4_1 { x^{2} } \, dx
\frac{8 \sqrt{ x^{3} } }{3}- x^{3}
Далее подставляем границы и получаем:
Но я подумал, желательно тебе расписать еще так:
\frac{8}{3} \sqrt{ x^{3} } - x^{3} 
Так будет легче подставлять границы.
\frac{8}{3}(8-1)-(64-1)
7* \frac{8}{3}-63
\frac{56}{3}-63= \frac{56-189}{3}= -\frac{133}{3}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота