Пусть вся работа 1 Путь одному рабочему на всю работу нужно х дней, тогда второму (х-5) дней. Т.к. первый делает всю работу за х дней, то за 1 день он делает 1/х часть работы Т.к. второй рабочий делает всю работу за (х-5) дней , то за 1 день он делает 1/(х-5) часть работы Работали рабочие вместе 6 дней, значит они сделали вместе 6/х+6/(х-5), что по условию задачи является всей работой, получим уравнение 6/х+6/(х-5)=1 6*(х-5)+6х=х(х-5) 6х-30+6х=х²-5х х²-17х+30=0 D=(-17)²-4*1*30=169=(13)² х₁=(17+13)/2=15, х₂=(17-13)/2=2(посторонний корень, не удовлетворет условию задачи) Т.о. первый рабочий может сделать всю работу сам за 15 дней, второй за 15-5=10 дней ответ: 15 дней и 10 дней
Алгоритм такой: находим производную и определяем на каких промежутках производная убывает/возрастает - это и есть промежутки монотонности; а) y'=-3/2*кор(x-5) -3/2*кор(x-5)=>0 кор(x-5)=>0 x=>5 но по определению кв корня он всегда больше или равен 0, значит функция монотонна на всей своей области значений и так как еще есть -3, то эту функция убывающая: E(y)=[5;+беск) - это и будет промежуток монотонности ответ: [5;+беск) - убывает б) y'=5/2кор(2-x) 5/2кор(2-x)>=0 2-x>=0 x<=2 значит будет тоже самое: E(y)=(-беск;2] - это промежуток монотонности, и на нем функция убывает; ответ: (-беск;2] - убывает
а) y'=-3/2*кор(x-5)
-3/2*кор(x-5)=>0
кор(x-5)=>0
x=>5
но по определению кв корня он всегда больше или равен 0, значит функция монотонна на всей своей области значений и так как еще есть -3, то эту функция убывающая:
E(y)=[5;+беск) - это и будет промежуток монотонности
ответ: [5;+беск) - убывает
б) y'=5/2кор(2-x)
5/2кор(2-x)>=0
2-x>=0
x<=2
значит будет тоже самое:
E(y)=(-беск;2] - это промежуток монотонности, и на нем функция убывает;
ответ: (-беск;2] - убывает