Самостійна робота з алгебри 9 кл
Варіант 1
У завданнях 1-5 виберіть правильну відповідь.
На тарілці лежать 5 шматочків торта і 8 тістечок. Скількома можна вибрати один шматочок торта або одне тістечко?
а) 5; б) 8; в) 13; г) 40.
На таці лежать 6 кульок і 9 кубиків. Скількома можна вибрати пару, яка складається з однієї кульки та одного кубика?
а) 6; б) 9; в) 15; г) 54.
На столі лежать 3 білі, 4 сині та 5 зелених карток. Яка ймовірність того, що перша навмання вибрана картка буде синьою?
а) 12; б)1/4; в)1/3; г)5/12.
Яка ймовірність того, що в результаті одного підкидання грального кубика випаде число очок, що дорівнює парному числу? а)1/2; б) 3; в) 2/3; г) 1.
У коробці лежать кульки різних кольорів: 12 — білого, 7 — чорного і 1 — зеленого. З цього ящика навмання беруть одну кульку. Яка ймовірність того, що ця кулька білого кольору?
а) 12; б)0,6; в)1/3; г)5/12.
тогда стоимость одной акции = 110000 / х (р.)
110000 / (х-20) = (110000 / х) + 50
110000 / (х-20) - (110000 / х) = 50
110000 * (1 / (х-20) - 1 / х) = 50
(х-х+20) / (х(х-20)) = 5 / 11000
х(х-20) = 44000
х² - 20х - 44000 = 0 44000 = 440 * 100 = 220 * 200
по т.Виета корни (220) и (-200)
ответ: предприниматель приобрел 220 акций.
ПРОВЕРКА:
стоимость одной акции = 110000 / 220 = 1000 / 2 = 500 (р.)
стоимость одной акции через год = 550 (р.)
110000 / 550 = 1000 / 5 = 200 акций ---это на 20 акций меньше))
Исследовать функцию y=-x^4+8x^2-9 и построить ее график.
1. Область определения функции - вся числовая ось.
2. Функция y=-x^4+8x^2-9 непрерывна на всей области определения. Точек разрыва нет.
3. Четность, нечетность, периодичность:
Так как переменная имеет чётные показатели степени, то функция чётная, непериодическая.
4. Точки пересечения с осями координат:
Ox: y=0, -x^4+8x^2-9=0, заменим x^2 = n.
Квадратное уравнение, решаем относительно n:
Ищем дискриминант:
D=8^2-4*(-1)*(-9)=64-4*(-1)*(-9)=64-(-4)*(-9)=64-(-4*(-9))=64-(-(-4*9))=64-(-(-36))=64-36=28;
Дискриминант больше 0, уравнение имеет 2 корня:
n₁=(√28-8)/(2*(-1)) = (√28-8)/(-2) = -(2√7/2-8/2)= 4 -√7 ≈ 1,354249;
n₂ = (-√28-8)/(2*(-1)) = (-2√7-8)/(-2)= 4 + √7 ≈ 6,645751.
Обратная замена: х = √n.
x₁ = √1,354249 = 1,163722, x₂ = -1,163722.
x₃ = √6,645751 = 2,57793, x₄ = -2,577935.
Получаем 4 точки пересечения с осью Ох:
(1,163722; 0), (-1,16372; 0), (2,57793; 0), (-2,57793; 0).
x₃ = √6,645751 = 2,57793,
Oy: x = 0 ⇒ y = -9. Значит (0;-9) - точка пересечения с осью Oy.
5. Промежутки монотонности и точки экстремума:
y=-x^4+8x^2-9.
y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.
Имеем 3 критические точки: х = 0, х = 2 и х = -2.
Определяем знаки производной вблизи критических точек.
x = -3 -2 -1 0 1 2 3
y' = 60 0 -12 0 12 0 -60.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
Минимум функции в точке: x = 0.
Максимумы функции в точках:
x = -2.
x = 2.
Убывает на промежутках (-2, 0] U [2, +oo).
Возрастает на промежутках (-oo, -2] U [0, 2).
6. Вычисление второй производной: y''=-12х² + 16 ,
Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
Вторая производная 4 \left(- 3 x^{2} + 4\right) = 0.
Решаем это уравнение
Корни этого уравнения
x_{1} = - \frac{2 \sqrt{3}}{3}.
x_{2} = \frac{2 \sqrt{3}}{3}.
7. Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]
Выпуклая на промежутках (-oo, -2*sqrt(3)/3] U [2*sqrt(3)/3, oo)
8. Искомый график функции в приложении.
Подробнее - на -
Объяснение: