ответ: 1.{3a+7b=8
{a+5b=4/*(-3)⇒-3a-15b=-12
прибавим
-8b=-4
b=-4:(-8)
b=0,5
a+5*0,5=4
a=4-2,5
a=1,5
ответ (1,5;0,5)
{4x-2y+6x+3y=32⇒10x+y=32/*7⇒70x+7y=224
{10x-5y-4x-2y=4⇒6x-7y=4
76x=228
x=228:76
x=3
10*3+y=32
y=32-30
y=2
ответ (3;2)
2.Пусть х км в час - собственная скорость катера, у км в час - скорость течения реки.
Тогда (х+у) км в час - скорость катера по течению,
(х-у) км в час - скорость катера против течения.
3·(х+у) км путь катера по течению за 3 часа.
5·(х-у) км путь катера против течения за 5 часов.
Всего по условию задачи 92 км.
Первое уравнение:
3·(х+у) + 5·(х-у) = 92;
5·(х+у) км путь катера по течению за 5 часов.
6·(х-у) км путь катера против течения за 6 часов.
По условию задачи 5·(х+у) больше 6·(х-у) на 10.
Второе уравнение:
5·(х+у) - 6·(х-у) = 10.
Получена система двух уравнений с двумя переменными.
{3·(х+у) + 5·(х-у) = 92 ⇒{3x+3y+5x-5y=92 ⇒ { 8x-2y=92 ⇒ {4x-y=46
{5·(х+у) - 6·(х-у) = 10 ⇒{5x+5y-6x+6y=10 ⇒ {-x+11y=10 ⇒ {x=11y-10
{4·(11y-10)-y=46
{x=11y-10
{44y-40-y=46
{43y=86
{y=2
{x=11·2-10=12
О т в е т. 12 км в час - собственная скорость катера, 2 км в час - скорость течения реки.
3.График линейной функции имеет вид: y=kx + m
Известно, что график проходит через точки А(2;-1) и В(-2;-3). Согласно условию задачи,составлю систему уравнений.
2k+m= -1
-2k+m= -3
2m = - 4
m= - 2
Подставим значение m= -2 в одно из уравнений, получим:
2k - 2 = -1
2k= 1
k= 1/2 = 0,5
График линейной функции имеет вид: y = 0,5k - 2
Объяснение:
ответ: 1.{3a+7b=8
{a+5b=4/*(-3)⇒-3a-15b=-12
прибавим
-8b=-4
b=-4:(-8)
b=0,5
a+5*0,5=4
a=4-2,5
a=1,5
ответ (1,5;0,5)
{4x-2y+6x+3y=32⇒10x+y=32/*7⇒70x+7y=224
{10x-5y-4x-2y=4⇒6x-7y=4
прибавим
76x=228
x=228:76
x=3
10*3+y=32
y=32-30
y=2
ответ (3;2)
2.Пусть х км в час - собственная скорость катера, у км в час - скорость течения реки.
Тогда (х+у) км в час - скорость катера по течению,
(х-у) км в час - скорость катера против течения.
3·(х+у) км путь катера по течению за 3 часа.
5·(х-у) км путь катера против течения за 5 часов.
Всего по условию задачи 92 км.
Первое уравнение:
3·(х+у) + 5·(х-у) = 92;
5·(х+у) км путь катера по течению за 5 часов.
6·(х-у) км путь катера против течения за 6 часов.
По условию задачи 5·(х+у) больше 6·(х-у) на 10.
Второе уравнение:
5·(х+у) - 6·(х-у) = 10.
Получена система двух уравнений с двумя переменными.
{3·(х+у) + 5·(х-у) = 92 ⇒{3x+3y+5x-5y=92 ⇒ { 8x-2y=92 ⇒ {4x-y=46
{5·(х+у) - 6·(х-у) = 10 ⇒{5x+5y-6x+6y=10 ⇒ {-x+11y=10 ⇒ {x=11y-10
{4·(11y-10)-y=46
{x=11y-10
{44y-40-y=46
{x=11y-10
{43y=86
{x=11y-10
{y=2
{x=11·2-10=12
О т в е т. 12 км в час - собственная скорость катера, 2 км в час - скорость течения реки.
3.График линейной функции имеет вид: y=kx + m
Известно, что график проходит через точки А(2;-1) и В(-2;-3). Согласно условию задачи,составлю систему уравнений.
2k+m= -1
-2k+m= -3
2m = - 4
m= - 2
Подставим значение m= -2 в одно из уравнений, получим:
2k - 2 = -1
2k= 1
k= 1/2 = 0,5
График линейной функции имеет вид: y = 0,5k - 2
Объяснение:
(Х + 1) (x - 1) / (Х - 2)(x - 1) = (x² - 1) / (Х - 2)(x - 1) = (x² - 1) / (x² - 3x + 2)
2) (Х - 3) (x - 3)/ (Х + 3)(x - 3) = (x - 3)² / (x² - 9)
Х*(x + 3) / (Х - 3)(x + 3) = x*(x + 3) / (x² - 9)
3) (3 + Х)(x - 3) / (Х - 5)(x - 3) = (x² - 9) / (Х - 5)(x - 3) = (x² - 9) / (x² - 8x + 15)
Х*(x - 5) / (Х - 3)(x - 5) = Х*(x - 5) / (x² - 8x + 15)
4) (Х + 1)(x + 2) /x*(x² - 4) = (x² + 3x + 2) /x*(x² - 4)
x (4 + Х) / x( x² - 4)