Шеститомне зібрання творів розставляють на полиці навмання. Скількома можна розташувати ці томи за умови, що 5й і 6й томи мають стояти поряд? (з поясненнями)
Классификация: Дифференциальное уравнение первого порядка, разрешенной относительно производной, линейное неоднородное. Применим метод Лагранжа или так называемый "метод вариации произвольных постоянных). 1) Найдем сначала общее решение соответствующего однородного уравнения: - это уравнение ни что иное как дифференциальное уравнение с разделяющимися переменными.
2) Примем нашу константу за функцию, то есть, получим
И тогда, дифференцируя по правилу произведения, получим
Подставим теперь все эти данных в исходное дифференциальное уравнение
Пусть в основании лежит квадрат со стороной a, высота равна h. Тогда квадрат длины диагонали d вычисляется по формуле d^2 = 2a^2 + h^2, объём по формуле a^2 * h,
Применим метод Лагранжа или так называемый "метод вариации произвольных постоянных).
1) Найдем сначала общее решение соответствующего однородного уравнения:
- это уравнение ни что иное как дифференциальное уравнение с разделяющимися переменными.
2) Примем нашу константу за функцию, то есть, получим
И тогда, дифференцируя по правилу произведения, получим
Подставим теперь все эти данных в исходное дифференциальное уравнение
И тогда общее решение неоднородного уравнения:
2a^2 + h^2 = (8*sqrt(3))^2
2a^2 + h^2 = 192
2a^2 = 192 - h^2
a^2 = (192 - h^2)/2
V(h) = (192 - h^2) * h / 2 = 96h - h^3 / 2
Нужно найти максимальное значение V, если h принимает значения из отрезка [0, 8sqrt(3)].
V'(h) = 96 - 3h^2 / 2 = 0
3h^3 = 192
h^2 = 64
h = 8
V'(h) > 0 при h < 8; V'(h) < 0 при h > 8, поэтому h = 8 — точка максимума.
Vmax = V(8) = (192 - 64) * 8 / 2 = 512