Я не согласна с приведенным решением, поскольку новичок не знает, как возводить в квадрат сумму: там, помимо квадратов, есть еще удвоенное произведение. Попробуйте-ка поработать с этим удвоенным произведением. Я бы предложила такое решение: ввести искусственную переменную у, только сначала нужно написать область определения нашего х: поскольку выражение (х - 1) находится под знаком корня, то это выражение не может быть отрицательным, т.е. (х - 1) ≥0, х ≥ 1 (это пригодится попозже). Далее: √(х - 1) = у ⇒ х - 1 = y^2 ⇒ x = y^2 + 1 (ввели новую переменную и подставляем ее в уравнение): √(y^2 + 1 + 3 - 4y) + √(y^2 + 1 + 8 - 6y) = 1 √(y^2 - 4y + 4) + √(y^2 - 6y + 9) = 1 √(y - 2)^2 + √(y - 3)^2 = 1 (y - 2) + (y - 3) = 1 y - 2 + y - 3 = 1 2y = 6 ⇒ y = 3 Теперь возвращаемся к нашей переменной х: √(x - 1) = 3 - возводим обе части уравнения в квадрат: х - 1 = 9 ⇒ х = 10 (сверяем с областью определения нашего х, который должен быть ≥ 1, наш ответ соответствует, так что он правильный).
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
Я бы предложила такое решение: ввести искусственную переменную у, только сначала нужно написать область определения нашего х: поскольку выражение (х - 1) находится под знаком корня, то это выражение не может быть отрицательным, т.е. (х - 1) ≥0, х ≥ 1 (это пригодится попозже).
Далее: √(х - 1) = у ⇒ х - 1 = y^2 ⇒ x = y^2 + 1 (ввели новую переменную и подставляем ее в уравнение):
√(y^2 + 1 + 3 - 4y) + √(y^2 + 1 + 8 - 6y) = 1
√(y^2 - 4y + 4) + √(y^2 - 6y + 9) = 1
√(y - 2)^2 + √(y - 3)^2 = 1
(y - 2) + (y - 3) = 1
y - 2 + y - 3 = 1
2y = 6 ⇒ y = 3
Теперь возвращаемся к нашей переменной х:
√(x - 1) = 3 - возводим обе части уравнения в квадрат:
х - 1 = 9 ⇒ х = 10 (сверяем с областью определения нашего х, который должен быть ≥ 1, наш ответ соответствует, так что он правильный).
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.