В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
ренатик9
ренатик9
16.12.2022 06:21 •  Алгебра

Sin^2b-1 по формуле сколько?

Показать ответ
Ответ:
nazarkooo
nazarkooo
05.11.2021 11:45

Можно купить: 3 штанов, 6 рубашек и 1 куртку.

Объяснение:

Пусть

n - цена рубашки = 20 р; x - кол-во рубашек

m - цена штанов = 25 р; y - кол-во штанов

k - цена куртки = 50 р; z - кол-во курток

S - общая сумма = 245

нужно купить не менее 10 видов (что такое вид из условия не ясно, предположим, что это любой элемент одежды)

x = 2y

n*x + m*y + k*z <= S

n*2y + m*y + k*z <= S

y(2n + m) + kz <= S

y(40 + 25) + 50z <= 245

65y + 50z <= 245

Поскольку купить нужно максимальное кол-во элементов, то сначала купим как можно больше дешёвых элементов (рубашки и штаны), а что останется потратим на дорогие (куртки)

245:65 с остком будет 3 + остаток 50

т.е. y = 3

65*3 + 50z <= 245

195 + 50z <= 245

50z <= 245 - 195

50z <= 50

max z = 1

Таким образом, можно купить: 3 штанов, 6 рубашек и 1 куртку. Всего 10 элементов (видов).

0,0(0 оценок)
Ответ:
vipvip16tk
vipvip16tk
27.03.2021 01:37

Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби {\displaystyle \pm {\frac {m}{n}}}{\displaystyle \pm {\frac {m}{n}}}, где {\displaystyle m,n}m,n — натуральные числа. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.

Иррациональные числа

ζ(3) — ρ — √2 — √3 — √5 — ln 2 — φ,Φ — ψ — α,δ — e — {\displaystyle e^{\pi }}e^{\pi } и π

Другими словами, множество иррациональных чисел есть разность {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} }{\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.

О существовании иррациональных чисел (точнее отрезков, несоизмеримых с отрезком единичной длины), знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа {\displaystyle {\sqrt {2}}}{\sqrt {2}}[1].

К числу иррациональных чисел относятся отношение π окружности круга к его диаметру, число Эйлера e, золотое сечение φ и квадратный корень из двух[2][3][4]; на самом деле все квадратные корни натуральных чисел, кроме полных квадратов, иррациональны.

Иррациональные числа также могут рассматриваться через бесконечные непрерывные дроби. Следствием доказательства Кантора является то, что действительные числа неисчислимы, а рациональные счетны, отсюда следует, что почти все действительные числа иррациональны[5].

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота