Надо приравнять функцию к нулю и вычислить корни квадратного уравнения: заменив знаки на противоположные, получаем: 4n*2-12n+9=0 D=144-4*4*9=144-144=0 Дискриминант равен нулю - это значит, что у графика функции только одна точка пересечения с осью ОХ при х=12:8=1,5. Таким образом, график - парабола, ветви вниз, так как а= - 4 . При значании аргумента 1,5 функция равна нулю, при значении аргумента от минус бесконечности до 1,5 объединяя с промежутком 1,5 до плюс бесконечности функция принимает отрицательные значения. Положительные значения функция не принимает.
2.
Знаменатель геометрической прогрессии:
Вычислим теперь восьмой член геометрической прогрессии:
ответ:
3. Дано:
Найти:
Решение:
Вычислим знаменатель геометрической прогрессии:
Сумма первых членов вычисляется по формуле:
Сумма первых -ми членов геометрической прогрессии:
4.
Первый член геометрической прогрессии:
Cумма первых 5-ти членов геометрической прогрессии:
5.
Знаменатель:
Видим, что каждая последовательность умножается на 5. Следовательно, заданная последовательность - геометрическая прогрессия
заменив знаки на противоположные, получаем:
4n*2-12n+9=0
D=144-4*4*9=144-144=0
Дискриминант равен нулю - это значит, что у графика функции только одна точка пересечения с осью ОХ при х=12:8=1,5. Таким образом, график - парабола, ветви вниз, так как а= - 4 . При значании аргумента 1,5 функция равна нулю, при значении аргумента от минус бесконечности до 1,5 объединяя с промежутком 1,5 до плюс бесконечности функция принимает отрицательные значения. Положительные значения функция не принимает.