Обозначим а ---скорость первого пешехода в км/час b ---скорость второго пешехода в км/час t ---время в пути до встречи (для обоих пешеходов оно одинаковое))) тогда до встречи первый часть пути =(a*t) км до встречи второй часть пути =(b*t) км после встречи первый оставшуюся ему часть пути за 4 часа b * t / a = 4 отсюда: t = 4 * a / b после встречи второй оставшуюся ему часть пути за 9 часов a * t / b = 9 a*4*a / b² = 9 a / b = 3 / 2 t = 4*3/2 = 2*3 = 6 ответ: первый был в пути 4+6 = 10 часов второй был в пути 9+6 = 15 часов 6 часов они шли до встречи...
а ---скорость первого пешехода в км/час
b ---скорость второго пешехода в км/час
t ---время в пути до встречи (для обоих пешеходов оно одинаковое)))
тогда
до встречи первый часть пути =(a*t) км
до встречи второй часть пути =(b*t) км
после встречи первый оставшуюся ему часть пути за 4 часа
b * t / a = 4 отсюда: t = 4 * a / b
после встречи второй оставшуюся ему часть пути за 9 часов
a * t / b = 9
a*4*a / b² = 9
a / b = 3 / 2
t = 4*3/2 = 2*3 = 6
ответ: первый был в пути 4+6 = 10 часов
второй был в пути 9+6 = 15 часов
6 часов они шли до встречи...
В решении.
Объяснение:
Постройте на одной координатной плоскости графики функций:
1) у = 4х²; у = х²/4;
Графики - параболы с вершиной в начале координат (0; 0).
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
у = 4х²;
Таблица:
х -2 -1 0 1 2
у 16 4 0 4 16
у = х²/4;
Таблица:
х -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
у 9 6,25 4 2,25 1 0,25 0 0,25 1 2,25 4 6,25 9
2) у = -х²; у = х²/3;
Графики - параболы с вершиной в начале координат (0; 0).
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
у = -х²;
Таблица:
х -3 -2 -1 0 1 2 3
у -9 -4 -1 0 -1 -4 -9
у = х²/3;
Таблица:
х -6 -3 0 3 6
у 12 3 0 3 12
3) у = 2х²; у = 5х²;
Графики - параболы с вершиной в начале координат (0; 0).
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
у = 2х²;
Таблица:
х -3 -2 -1 0 1 2 3
у 18 8 2 0 2 8 18
у = 5х²;
Таблица:
х -2 -1 0 1 2
у 20 5 0 5 20