Сколько существует разрезать лесенку высотой 6 6 клеток на 5 5 прямоугольников и один квадрат? Лесенка, все прямоугольники и квадрат изображены ниже. При разрезании прямоугольники могут располагаться горизонтально.
2) √35 чуть меньше чем 6. Подумай, почему. √120 - почти 11. В порядке возрастания (если нужно будет в обратном, поменяешь местами): 2, 3, √35, 6.5, √120, 13.
3) Трапеция прямоугольная, значит одна боковая сторона тоже образует прямые углы с основаниями, как у квадрата. Эта сторона будет меньше, так как расположена под прямым углом, следовательно равна 9. Большая - 15. Отсекаем прямоугольник, проводя высоту с другой стороны трапеции, остаётся треугольник со сторонами 9, 15 и одной неизвестной, которую находим по теореме Пифагора: 15^2 = x^2 + 9^2 15^2 - 9^2 = x^2 x^2 = 225 - 81 = 144; x = √144
Для начала решим неравенство(оно, кстати, является линейным) как мы всегда это делали.
9x - 21 < a 9x < a + 21 x < (a+21)/9 Что мы здесь сделали? Мы просто решили линейное неравенство относительно x, а альфа - это параметр - неизвестное число. теперь совсем просто ответить на вопрос задачи. Решением нашего неравенства должно быть x < 4. Если мы немного всмотримся в решённое неравенство и в этот интервал, то мы заметим, что условие выполняется тогда, когда (a+21)/9 = 4 Действительно, если (a+21)/9 > 4, то решением исходного неравенства, очевидно, будет не только x < 4. Если же ,наоборот, меньше, то не весь интервал x < 4 будет решением неравенства. Поэтому, возможно только равенство, решаем полученное уравнение и находим альфа:
1) 800 * 5% = 800 * 0.05 = 40 - скидка
800 - 40 = 760 - цена чайника
1000 - 760 = 240 - сдача.
2) √35 чуть меньше чем 6. Подумай, почему.
√120 - почти 11.
В порядке возрастания (если нужно будет в обратном, поменяешь местами): 2, 3, √35, 6.5, √120, 13.
3) Трапеция прямоугольная, значит одна боковая сторона тоже образует прямые углы с основаниями, как у квадрата. Эта сторона будет меньше, так как расположена под прямым углом, следовательно равна 9. Большая - 15. Отсекаем прямоугольник, проводя высоту с другой стороны трапеции, остаётся треугольник со сторонами 9, 15 и одной неизвестной, которую находим по теореме Пифагора:
15^2 = x^2 + 9^2
15^2 - 9^2 = x^2
x^2 = 225 - 81 = 144;
x = √144
Большее основание = меньшее основание + X.
9x - 21 < a
9x < a + 21
x < (a+21)/9
Что мы здесь сделали? Мы просто решили линейное неравенство относительно x, а альфа - это параметр - неизвестное число.
теперь совсем просто ответить на вопрос задачи.
Решением нашего неравенства должно быть x < 4. Если мы немного всмотримся в решённое неравенство и в этот интервал, то мы заметим, что условие выполняется тогда, когда (a+21)/9 = 4
Действительно, если (a+21)/9 > 4, то решением исходного неравенства, очевидно, будет не только x < 4.
Если же ,наоборот, меньше, то не весь интервал x < 4 будет решением неравенства. Поэтому, возможно только равенство, решаем полученное уравнение и находим альфа:
a + 21 = 36
a = 36 - 21 = 15 - это и есть ответ