При броске игральной кости могут выпасть 1, 2, 3 , 4 , 5, 6 - шесть различных вариантов. Из них больше 3 - это 4 , 5, 6 - три варианта. Значит вероятность выпадения числа, большего 3 равна: Р1 = 3/6 = 1/2.
Если игральную кость бросают дважды, мы имеем дело с двумя независимыми событиями. Тогда вероятность того, что оба раза выпадет число,большее 3 равна произведению вероятностей выпадения числа, большего 3 при одном броске, т.е.
Р1 = 3/6 = 1/2.
Если игральную кость бросают дважды, мы имеем дело с двумя независимыми событиями. Тогда вероятность того, что оба раза выпадет число,большее 3 равна произведению вероятностей выпадения числа, большего 3 при одном броске, т.е.
Р =Р1 * Р1 = 1/2 * 1/2 = 1/4 = 0,25
ответ: 0,25.
4х²-2х+3=0
D=(-2)²-4×4×3=4-48=-44 D<0, уравнение не имеет корней
----------------------------------------------------------------------------
5х²+26х=24
5х²+26х-24=0
D=26²-4×5×(-24)=676+480=1156 D>0
х₁=
х₂=
х₁=0,8
х₂=-6
-------------------------------------------------------------------------
3х²-5х=0
D=5²-4×3×0=25-0=25 D>0
х₁=
х₂=
х₁=1,667
х₂=0
--------------------------------------------------------------------
6-2х²=0
-2х²+6=0
D=0²-4×(-2)×6=0+48=48 D>0
х₁=
х₂=
х₁=-1,732
х₂=1,732
------------------------------------------------------------------
t²=35-2t
t²+2t-35=0
D=2²-4×1×(-35)=4+140=144
t₁=
t₂=
t₁=5
t₂=-7