скорость прямолинейно движущейся точки задана формулой V(t)=5sin(2t-π/3)Напишите формулы зависимости её ускорения а и координаты х от времени t, если при t=π/2 координата x=9/4 в этот момент времени найдите a и V
(5) (6) . Сумма всех плоских углов всех граней тетраэдра равна сумме углов четырёх треугольников, т.е. 720o , поэтому, если суммы углов при каждой вершине равны, то каждая из этих сумм равна 180o . Обратное: (6) (5) – очевидно. (4) (8) . Если R – радиус описанной около тетраэдра сферы, r – радиус вписанной сферы и центры этих сфер совпадают (рис.1), то точка касания сферы с каждой гранью лежит лежит внутри этой грани и удалена от каждой вершины треугольника на расстояние , т.е. является центром описанной около этого треугольника окружности радиуса . (8) (4) . В любом тетраэдре перпендикуляры, опущенные из центра O описанной сферы на грани (рис.1), попадают в центры описанных окружностей, и если радиусы этих окружностей равны R1 , то точка O одинаково удалена от всех граней (на расстояние ), а т.к. все грани – остроугольные треугольники, то O – центр вписанной сферы. (8) (6) . Если радиусы описанных окружностей граней ABC и DBC тетраэдра ABCD равны, то BAC = BDC , поскольку эти углы острые и опираются на равные дуги BC в равных окружностях (рис.2). Аналогично для всех пар смежных граней. Таким образом, BDC + CDA + ADB = BAC+ CBA + ACB = 180o.
b6=0.81*(-q)^5
2.b1=6; q=2. Найти S(7)
S(7)=6(2^7-1)/(2-1)=762
3. b1=-40; b2=-20; b3=-10. Найти сумму n членов бесконечной прогрессии.
q=-20/-40=-10/-20=0.5
S(n)=-40(0.5^n-1)/(0.5-1)
S(n)=(80*0.5^n)-80
4. b2=1.2; b4=4.8. Найти S(8)
(b3)^2=1.2*4.8=5.76
b3=√5.76=2.4
q=4.8/2.4=2.4/1.2=2
b1=1.2/2=0.6
S(8)=0.6(2^8-1)/(2-1)
S(8)=153
5. Представить в виде обыкновенной дроби бесконечную периодическую дробь.
a) 0.(153)
k=3
m=0
a=153
b=0
0+(153-0)/999=153/999=51/333=17/111
b) 0.3(2)
k=1
m=1
a=32
b=3
0+((32-3)/90)=29/90