Решение: по теореме пифагора сумма квадратов катетов равна квадрату гипотенузы пусть х - наш искомый катет, то второй катет будет х-7, а гипотенуза х+1 составим уравнение: х²+(х-7)² = (х+1)² х²+х²-14х+49 = х²+2х+1 2х²-14х+49 = х²+2х+1 х²-16х+48 = 0
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7
Пусть скорость течения реки - х км/ч Вверх по реке - это значит плывет против течения... S=6 км проплыл сначала. Скорость лодки в стоячей воде 90 м/мин = (90*60) /1000 км/час = = 5,4 км/час Время после отправления из N это t=4 часа 30 минут= 4,5 ч Составим уравнение 6 / (5,4-х) + 6 / х = 4,5 6х + 6* (5,4-х) = 4,5х* (5,4-х) 324 + 45x^2 - 243x = 0 5x^2 - 27 + 36 = 0 полное квадратное уравнение. D = 27² - 4* 5* 36 = 729-720=9 x1 = (27-3) /10 = 2,4 км/ч x2 = 3 км/час Задача имеет 2 решения х=2,4 км/ч и х=3 км/ч
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7
Вверх по реке - это значит плывет против течения...
S=6 км проплыл сначала.
Скорость лодки в стоячей воде 90 м/мин = (90*60) /1000 км/час =
= 5,4 км/час
Время после отправления из N это t=4 часа 30 минут= 4,5 ч
Составим уравнение
6 / (5,4-х) + 6 / х = 4,5
6х + 6* (5,4-х) = 4,5х* (5,4-х)
324 + 45x^2 - 243x = 0
5x^2 - 27 + 36 = 0 полное квадратное уравнение.
D = 27² - 4* 5* 36 = 729-720=9
x1 = (27-3) /10 = 2,4 км/ч
x2 = 3 км/час
Задача имеет 2 решения х=2,4 км/ч и х=3 км/ч