Случайная величина имеет нормальное распределение с математическим ожиданием а = 15 и средним квадратическим отклонением о = 5. Найти вероятность того, что случайная величина примет значение,
принадлежащее интервалу (10; 30).
ответ:
(Воспользуйтесь таблицей значений функции Лапласа)
Для f(x) = 2 в качестве T можно взять что угодно, например T = 2π: для любых x верно, что f(x) = f(x + T) = 2. Поэтому функция f(x) = 2 периодическая.
У этой функции нет наименьшего положительного периода, её период - любое вещественное число. Похожим свойством, например, обладает функция Дирихле, равная 1, если её аргумент рационален, и 0, если иррационален. Периодом функции Дирихле можно считать любое рациональное число.
Всего 60 трехзначных чисел
На первое место можно разместить любую из пяти цифр, пять На второе место можно разместить любую из четырех цифр, четыре На третье место любую из оставшихся трех цифр, три На все три места результаты выбора умножаем.
5·4·3=60
а) кратны трем те числа, у которых сумма цифр кратна трем
Например, используя цифры 1; 2; 3, сумма цифр которых 1+2=3=6 кратна 3 можно составит шесть чисел, кратных 3:
123; 132;321;312;231;213
Возможностей 4:
1+2+3=6 кратно 3
2+3+4= 9 кратно 3
3+4+5=12 кратно 3
1+3+5=9 кратно 3
В каждой возможности 6 чисел. Всего 24 числа.
б) Кратны четырем те трехзначные числа, у которых две последние цифры кратны 4. Возможны варианты:
*12
*24
*32
*52
На первое место можно разместить любую из оставшихся трех цифр, тремя Всего 3·4=12 чисел
в) кратных 5:
12:
на последнем месте обязательно располагается цифра 5 ( числа кратные 5 оканчиваются на 5 или на 0, 0 у нас нет). На первое место можно выбрать любую из четырех оставшихся цифр - четыре на второе место любую из оставшихся трех - три Всего Подробнее - на -