Составьте уравнение касательной к графику функции f в точке М. F (х) = 2 х 2 + х 3 , М (-3;9) f(х) = х 3 - 2 х , М (3;9).
2).Тело движется по закону х(t) = t 4 +0,5 t2 – 3t , х(t) = t 3 - 2 t 2 + 5 ,
х- в метрах, t- в секундах
Найдите скорость и ускорение тела через 2 секунды после начала движения.
3).Найдите тангенс угла наклона касательной к графику функции f(х) в точке х 0 :
f(х) = 3 х 2 - 1 2 х + 5 , х0 = - 1, f(х) = 2 х 2 + 8 х - 3 , х0 = - 3.
1) −0,8z5(1,2m5−2,5z) = -0.96z5m5+2z6
2) 11p3d(d3p−d3)=11p4d4−11p3d4
3) x9y2z(x2+10y2+7z2)=)x11y2z+10x9y4z+7x9y2z3
4) (4a3−3b)⋅2b−3b⋅(14a3−4b)=8a³b-6b²-42a³b+12b²= -34a³b+6b²
5) −9t2(2t5−3k)+5(4t7−2k)=-18t7+27t²k+20t7-10k=2t7+27t²k-10k
6) 13ab(14a²−b2)+14ab(b²−13a²)=182a³b-13ab³+14ab³=182a³b=ab³
10*(-2)³=10*(-8)=-80
7) 0,8(4a+3b)−6(0,3a+0,8b)=3.2a+2.4b-1.8a-4.8b=1.4а-2.4b
1.4*2-2.4*(-4)=2.8+9.6=12.4
8) 3x−ay+bz=3*(5с3+2)-3с(6с2-с+14)+15с3*(5с-1)=15с3+6-18с3+3с2-42с+75с4-15с3=75с4+(-18с3)+3с2+(-42с)+6
Объяснение:
Хватит.
Объяснение:
Сначала найдем, сколько скотча Игорь потратил на упаковку 390 маленьких коробок:
390 * 50 = 19500 см - именно столько скотча в 3 1/4 рулонах.
Теперь найдем, сколько ему потребуется для упаковки 420 коробок по 70 см каждая.
420 * 70 = 29400 см.
Чтобы узнать, хватит ли ему пяти рулонов, нужно найти, сколько скотча в четырех рулонах. Для этого разделим 19500 на 3 1/4, и найдем, сколько скотча в одном рулоне.
19500 / 3,25 = 6000 см
Соответственно, в пяти будет 6000 * 5 = 30000 см.
30000 > 29400, значит 5 рулонов ему хватит.