В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Aryzhaн
Aryzhaн
27.12.2022 06:23 •  Алгебра

Составьте уравнение касательной к графику функции y=-x⁴/27 + x²/3 - 2x + 5 в точке с абсциссой x=3.

Показать ответ
Ответ:
ffghh1gfdd
ffghh1gfdd
15.10.2020 07:21

Объяснение:

уравнения касательной в общем виде:

f(x)=y(x_0)(x-x_0)+y(x_0)

по условию задачи x0 = 3, тогда y0 = -1

найдем производную:

y = (-x4/27+x2/3-2x+5) = -2+2/3x-4/27x3

следовательно:

y(3) = -2+2/3 3-4/27 33 = -4

f(x) = y0 + y(x0)(x - x0)

f(x) = -1 -4(x - 3)

или

f(x) = 11-4x

ответ: 11-4х

0,0(0 оценок)
Ответ:
Ksenia2351
Ksenia2351
15.10.2020 07:21

1. найдем значение функции в заданной точке.

у(3)=-3⁴/27 + 3²/3 - 2*3 + 5 =-3+3-6+5=-1

2. найдем производную функции. y=-x⁴/27 + x²/3 - 2x + 5

y'=(-x⁴/27 + x²/3 - 2x + 5 )'=-4x³/27+2x/3-2

3. найдем значение производной в точке 3

y'(3)=-4*3³/27+2*3/3-2=-4+2-2=-4

4. уравнение касательной имеет общий вид у=у(х₀)+у'(х₀)(х-х₀),

где х₀=3, в вашем примере она обозначена не х₀, а          х.

Итак, соберем уравнение. у=-1-4*(х-3)

у=-4х+11

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота