1) Так как существует точка (1;1), то а+b+с=1. Так как при X=2, будет то же значение, то 4a+2b+c=1. Теперь получаем два уравнения. Если из второго вычесть первое, то получим 3a+b=0. b=-3a. Подставив в первое уравнение, получаем, что a-3a+c=1. с=1+2a. Так как в точке x=(-b)/(2a) - вершина параболы, то x=-(-3*a)/(2a). x=3a/(2a). x=1,5. Это парабола, у которой ветви направлены вниз, так как существует наибольшее значение. Это значение достигается на вершине параболы при x=1,5 и y=3. Подставив эти значения в квадратное уравнение, получаем 3=2,25a+1,5b+c. Заменим b и c через a. 3=2,25a+1,5*(-3a)+1+2a. Упрощаем и находим a. 3=2,25a-4,5a+1+2a. 2=2,25a-4,5a+2a. 2=-0,25a. a=-8. Это значение должно быть отрицательным, так как ветви параболы напрвлены вниз. b=-3*a. b=-3*(-8). b=24. c=1+2*(-8). c=-15.
2) Двузначное число можно представить в виде 10*a+b, где a и b будут однозначными цифрами в позиционной системе счисления. Так происходит деление на сумму этих чисел, то это выражается в виде (10*a+b)=7*(a+b)+6. Деление на произведение (10*a+b)=3*(a*b)+11. Из первого уравнения получаем 10*a+b=7*a+7*b+6. 3*a-6*b=6. Сокращаем обе части на 3. Получаем a-2*b=2, a=2+2b. Упростим тепрь второе уравнение 10a+b=3ab+11. Подставим значение а из полученного во второе уравнение. 10(2+2b)+b=3(2+2b)b+11. 20+21b=6b+6b^2+11. Придется решать квадратное уравнение. 6b^2-15b-9=0. D=15^2-4*6*(-9). D=225+216. D=441. D=21^2. b=(15+21)/2/6. Здесь вариант с минусом убирается так как b - только положительное число. b=36/2/6. b=3. Значит a= 2+2b. a=2+6. a=8. Исходное число будет равно 83.
||2^x+x-2|-1| > 2^x-x-1 Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты))) Помним о важном правиле: |x| =x, если x>=0 |x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу: {|2^x+x-2|-1 >2^x-x-1 {|2^x+x-2|-1> -2^x+x+1 Переносим "-1" из левой части в правую: {|2^x+x-2| > 2^x-x {|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу: {2^x+x-2>2^x-x {2x-2>0 {2^x+x-2>x-2^x {2*2^x-2>0 {2^x+x-2>-2^x+x+2 {2*2^x-4>0 {2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1 {2^x>1 {x>0 {2^x>2 {x>1 {x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
1) Так как существует точка (1;1), то а+b+с=1. Так как при X=2, будет то же значение, то 4a+2b+c=1. Теперь получаем два уравнения. Если из второго вычесть первое, то получим 3a+b=0. b=-3a. Подставив в первое уравнение, получаем, что a-3a+c=1. с=1+2a. Так как в точке x=(-b)/(2a) - вершина параболы, то x=-(-3*a)/(2a). x=3a/(2a). x=1,5. Это парабола, у которой ветви направлены вниз, так как существует наибольшее значение. Это значение достигается на вершине параболы при x=1,5 и y=3. Подставив эти значения в квадратное уравнение, получаем 3=2,25a+1,5b+c. Заменим b и c через a. 3=2,25a+1,5*(-3a)+1+2a. Упрощаем и находим a. 3=2,25a-4,5a+1+2a. 2=2,25a-4,5a+2a. 2=-0,25a. a=-8. Это значение должно быть отрицательным, так как ветви параболы напрвлены вниз. b=-3*a. b=-3*(-8). b=24. c=1+2*(-8). c=-15.
2) Двузначное число можно представить в виде 10*a+b, где a и b будут однозначными цифрами в позиционной системе счисления. Так происходит деление на сумму этих чисел, то это выражается в виде (10*a+b)=7*(a+b)+6. Деление на произведение (10*a+b)=3*(a*b)+11. Из первого уравнения получаем 10*a+b=7*a+7*b+6. 3*a-6*b=6. Сокращаем обе части на 3. Получаем a-2*b=2, a=2+2b. Упростим тепрь второе уравнение 10a+b=3ab+11. Подставим значение а из полученного во второе уравнение. 10(2+2b)+b=3(2+2b)b+11. 20+21b=6b+6b^2+11. Придется решать квадратное уравнение. 6b^2-15b-9=0. D=15^2-4*6*(-9). D=225+216. D=441. D=21^2. b=(15+21)/2/6. Здесь вариант с минусом убирается так как b - только положительное число. b=36/2/6. b=3. Значит a= 2+2b. a=2+6. a=8. Исходное число будет равно 83.
Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты)))
Помним о важном правиле:
|x| =x, если x>=0
|x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу:
{|2^x+x-2|-1 >2^x-x-1
{|2^x+x-2|-1> -2^x+x+1
Переносим "-1" из левой части в правую:
{|2^x+x-2| > 2^x-x
{|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу:
{2^x+x-2>2^x-x {2x-2>0
{2^x+x-2>x-2^x {2*2^x-2>0
{2^x+x-2>-2^x+x+2 {2*2^x-4>0
{2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1
{2^x>1 {x>0
{2^x>2 {x>1
{x>0 {x>0
Решением неравенства является промежуток (1; + беск.)