1) ОДЗ: 1≤х≤4 решение - графическое... нужно ведь не корни найти, а количество корней))) одна функция монотонно убывает, другая монотонно возрастает, они если и пересекутся, то всего лишь ОДИН раз. ответ: один корень 2) ОДЗ: х>0; x≠1 (log(5)x)³ + 3(log(5)x)² = -2*log(5)x использована формула перехода к логарифму по новому основанию (log(5)x)³ + 3(log(5)x)² + 2*log(5)x = 0 log(5)x*((log(5)x)² + 3*log(5)x + 2) = 0 1. log(5)x = 0 ---> x=1 ---посторонний корень (вне ОДЗ) в скобках --квадратное уравнение относительно log(5)x по т.Виета корни (-2) и (-1) log(5)x = -2 ---> x₁ = 0.04 log(5)x = -1 ---> x₂ = 0.2
пустьвся работа равна 1, х часов работает один первый экскаватор, тогда второй работает один х-4 часов, производительность первого экскаватора 1/х, а производительность второго 1/(х-4), вместе они выполнят всю работу за 3 часа 45 минут или 15/4 часа. первый выполнит 15/4*(1/х)=15/(4*х) часть всей работы, а второй выполнит 15/4*(1/(х-4))=15/(4*х*(х-4)) часть работы, а вместе они выполнят всю работу, которая равна 1. получаем уравнение:
15/(4*х)+15/(4*х*(х-4))=1 после преобразований получим уравнение
15*(х-4)+15*х=4*х*(х-4)
15х-60+15х=4х²-16х
4х²-46х+60=0
2х²-23х+30=0
D=23²-4*2*30=529-240=289=17²
х₁=-((-23)+17)/(2*2)=6/4 - не удовлетворяет условию задачи
решение - графическое...
нужно ведь не корни найти, а количество корней)))
одна функция монотонно убывает, другая монотонно возрастает,
они если и пересекутся, то всего лишь ОДИН раз.
ответ: один корень
2) ОДЗ: х>0; x≠1
(log(5)x)³ + 3(log(5)x)² = -2*log(5)x
использована формула перехода к логарифму по новому основанию
(log(5)x)³ + 3(log(5)x)² + 2*log(5)x = 0
log(5)x*((log(5)x)² + 3*log(5)x + 2) = 0
1. log(5)x = 0 ---> x=1 ---посторонний корень (вне ОДЗ)
в скобках --квадратное уравнение относительно log(5)x
по т.Виета корни (-2) и (-1)
log(5)x = -2 ---> x₁ = 0.04
log(5)x = -1 ---> x₂ = 0.2
пустьвся работа равна 1, х часов работает один первый экскаватор, тогда второй работает один х-4 часов, производительность первого экскаватора 1/х, а производительность второго 1/(х-4), вместе они выполнят всю работу за 3 часа 45 минут или 15/4 часа. первый выполнит 15/4*(1/х)=15/(4*х) часть всей работы, а второй выполнит 15/4*(1/(х-4))=15/(4*х*(х-4)) часть работы, а вместе они выполнят всю работу, которая равна 1. получаем уравнение:
15/(4*х)+15/(4*х*(х-4))=1 после преобразований получим уравнение
15*(х-4)+15*х=4*х*(х-4)
15х-60+15х=4х²-16х
4х²-46х+60=0
2х²-23х+30=0
D=23²-4*2*30=529-240=289=17²
х₁=-((-23)+17)/(2*2)=6/4 - не удовлетворяет условию задачи
х₂=-(-23-17)/(2*2)=40/4=10
10ч - выполнит всю работу первый экскаватор,
10-4=6ч - выполнит всю работу второй экскаватор
ответ: 10ч и 6ч