K - первое число (k+1) - второе (k+2) - третье (k+3) - четвертое число 1) Находим разность квадратов первых двух последовательных натуральных чисел (k+1)² - k² = k²+2k+1-k² = (2k+1) 2) Находим разность квадратов следующих двух последовательных натуральных чисел (k+3)² - (k+2)² = k²+6k+9-(k² +4k+4)= k²+6k+9-k² -4k-4 = = (2k+5) 3) Сумма полученных разностей квадратов равна 38, получаем уравнение: (2k+1)+(2k+5) = 38 4k + 6 = 38 4k=38-6 4k=32 k = 32 : 4 k = 8 Итак, получаем: 8 - первое число 8+1=9 - второе 8+2=10 - третье 8+3=11 - четвертое число ответ: 8; 9; 10; 11.
(k+1) - второе
(k+2) - третье
(k+3) - четвертое число
1) Находим разность квадратов первых двух последовательных натуральных чисел
(k+1)² - k² = k²+2k+1-k² = (2k+1)
2) Находим разность квадратов следующих двух последовательных натуральных чисел
(k+3)² - (k+2)² = k²+6k+9-(k² +4k+4)= k²+6k+9-k² -4k-4 =
= (2k+5)
3) Сумма полученных разностей квадратов равна 38, получаем уравнение:
(2k+1)+(2k+5) = 38
4k + 6 = 38
4k=38-6
4k=32
k = 32 : 4
k = 8
Итак, получаем:
8 - первое число
8+1=9 - второе
8+2=10 - третье
8+3=11 - четвертое число
ответ: 8; 9; 10; 11.
Чтобы найти пересечение с осью Х, подставим 0 вместо у и решим относительно х
(0) = 0,5х - 3
Перепишем уравнение в виде
0,5х - 3 = 0
0,5х - 3 = 0
Поскольку - 3 не смодержит искомой переменной, переместим его в правую часть уравнения, прибавив 3 к обоим частям
0,5х = 3
Разделим каждый член на 0,5 и упростим
х = 6
Чтобы найти пересечение с осью Y, подставим 0 вместо х и решим относительно у
у = 0,5 (0) - 3
Решим уравнение
у = - 3
Это пересечения с осями х и у графика уравнения у = 0,5х - 3
точки пересечения с осью Х: (6; 0)
пересечение с осью Y: (0; -3)