сума двох чисел дорівнює 11, а їх добуток -- 30. Знайти ці числа. Яка із систем а)-д) відповідає умові задачі, якщо одне з чисел позначено через x, а інше -- через y?
Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной. Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
3 или 4 слагаемых с минусами.
Объяснение:
Я уже решал эту задачу.
Мы можем поставить 1, 2 или 3 минуса.
Если поставить один или три минуса, то получится:
(a - b + c + d)^2 = ((a+c+d) - b)^2 = (a+c+d)^2 - 2b(a+c+d) + b^2
Или, с тремя минусами:
(a - b - c - d)^2 = (a - (b+c+d))^2 = a^2 - 2a(b+c+d) + (b+c+d)^2
В обоих случаях получается три слагаемых с минусами.
Если же поставить два минуса, то получится:
(a + b - c - d)^2 = ((a+b) - (c+d))^2 = (a+b)^2 - 2(a+b)(c+d) + (c+d)^2 =
= (a+b)^2 - 2(ac+bc+ad+bd) + (c+d)^2
Здесь получается 4 слагаемых с минусом.
Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».