В решении.
Объяснение:
Встановіть відповідність між виразами (1-4)тотожно рівними їм многочленами А-Д 1(2х+y)(y-2x) 2)(y-2x)квадраті 3)(Х+2у)(Х квадраті -2ху+4хквадраті) 4)(2х-2у)квадраті а)4х квадраті +8xy+4yквадраті б)у квадраті-4х квадраті в)х Кубі +8у Кубі Г)у квадраті -4ух+4х квадраті Д)4х квадраті+4ху+4у квадраті
Установите соответствие между выражениями (1-4) и тождественно равными им многочленами А-Д:
1) (2х+y)(y-2x) = у² - 4х²; Б;
2) (y-2x)² = у² - 4ху + 4х²; Г;
3) (х+2у)(х² -2ху + 4х²) = х³ + 8у³; В;
4) (2х+2у)² = 4х² + 8ху + 4у²; А.
А) 4х² + 8xy + 4y²;
Б) у² - 4х²;
В) х³ + 8у³:
Г) у² - 4ух + 4х²;
Д) 4х² + 4ху + 4у².
Будем считать, что дана арифметическая прогрессий, сумма трёх первых членов которой равна 15.
Её свойство: an+1= an + d, где d — это разность арифметической прогрессии.
Запишем сумму по условию для трёх членов.
Пусть первый х.
х + (х + d) + (х + 2d) = 15,
3х + 3d = 15 или, сократив на 3: х + d = 5.
То есть второй член найден и равен 5.
Получили члены арифметической прогрессии:
х, 5, (15 - х - 5) = х, 5, (10 - х).
Теперь используем условие для геометрической прогрессии:
(х + 1), (5 + 4), (10 - х + 19).
(х + 1), 9, (29 - х). Получили 3 члена геометрической прогрессии.
По свойству геометрической прогрессии:
(х + 1) / 9 = 9 / (29 - х).
Решаем эту пропорцию как квадратное уравнение и определяем его 2 корня: х1 = 2 и х2 = 26.
Последнее число не подходит.
Принимаем х = 2 и получаем ответ:
заданные числа равны 2, 5 и 8.
В решении.
Объяснение:
Встановіть відповідність між виразами (1-4)тотожно рівними їм многочленами А-Д 1(2х+y)(y-2x) 2)(y-2x)квадраті 3)(Х+2у)(Х квадраті -2ху+4хквадраті) 4)(2х-2у)квадраті а)4х квадраті +8xy+4yквадраті б)у квадраті-4х квадраті в)х Кубі +8у Кубі Г)у квадраті -4ух+4х квадраті Д)4х квадраті+4ху+4у квадраті
Установите соответствие между выражениями (1-4) и тождественно равными им многочленами А-Д:
1) (2х+y)(y-2x) = у² - 4х²; Б;
2) (y-2x)² = у² - 4ху + 4х²; Г;
3) (х+2у)(х² -2ху + 4х²) = х³ + 8у³; В;
4) (2х+2у)² = 4х² + 8ху + 4у²; А.
А) 4х² + 8xy + 4y²;
Б) у² - 4х²;
В) х³ + 8у³:
Г) у² - 4ух + 4х²;
Д) 4х² + 4ху + 4у².
Будем считать, что дана арифметическая прогрессий, сумма трёх первых членов которой равна 15.
Её свойство: an+1= an + d, где d — это разность арифметической прогрессии.
Запишем сумму по условию для трёх членов.
Пусть первый х.
х + (х + d) + (х + 2d) = 15,
3х + 3d = 15 или, сократив на 3: х + d = 5.
То есть второй член найден и равен 5.
Получили члены арифметической прогрессии:
х, 5, (15 - х - 5) = х, 5, (10 - х).
Теперь используем условие для геометрической прогрессии:
(х + 1), (5 + 4), (10 - х + 19).
(х + 1), 9, (29 - х). Получили 3 члена геометрической прогрессии.
По свойству геометрической прогрессии:
(х + 1) / 9 = 9 / (29 - х).
Решаем эту пропорцию как квадратное уравнение и определяем его 2 корня: х1 = 2 и х2 = 26.
Последнее число не подходит.
Принимаем х = 2 и получаем ответ:
заданные числа равны 2, 5 и 8.